Skip to main content
Log in

Synthesis of Crystalline Tungsten Carbide Phases under the Influence of Atmospheric Electrical Arc Plasma on Tungsten Oxide

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The possibility of synthesizing powders based on tungsten carbides in atmospheric electrical arc plasma with the use of tungsten oxide as an initial tungsten source is shown. It has been established that the phase composition of the vacuumless arc synthesis product depends on the supplied energy. Tungsten carbide is presented by both particles of nearly several tens of micrometers in size and particles of nanometer range with a maximum of distribution from 5 to 15 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fernandes, C.M. and Senos, A.M.R., Cemented carbide phase diagrams: A review, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 405–418.

    Article  CAS  Google Scholar 

  2. García, J., Collado Ciprés, V., Blomqvist, A., and Kaplan, B., Cemented carbide microstructures: A review, Int. J. Refract. Met. Hard Mater., 2019, vol. 80, pp. 40–68.

    Article  Google Scholar 

  3. Liu, C., Liu, Y., Ma, Y., Liu, W., and He, Y., Influence of µ-size WC on the corrosion behavior of ultrafine WC/WC–Co cemented carbides, J. Superhard Mater., 2019, vol. 41, no. 5, pp. 60–71.

    Article  Google Scholar 

  4. Prokopiv, M.M. and Kharchenko, O.V., Features of influence of sintering conditions of fine-grained WC–10Co cemented carbide on its structure, physical-mechanical and operational characteristics, J. Superhard Mater., 2019, vol. 41, no. 2, pp. 106–113.

    Article  Google Scholar 

  5. Emin, S., Altinkaya, C., Semerci, A., Okuyucu, H., Yildiz, A., and Stefanov, P., Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution, Appl. Catal. B, 2018, vol. 236, pp. 147–153.

    Article  CAS  Google Scholar 

  6. Wang, K.-F., Sun, G.-D., Wu, Y.-D., Zhang, G.-H., and Chou, K.-C., Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction–carburization process, Int. J. Refract. Met. Hard Mater., 2019, vol. 84, art. ID 104975.

    Article  CAS  Google Scholar 

  7. Kirakosyan, Kh.G., Manukyan, Kh.V., Kharatyan, S.L., and Mnatsakanyan, R.A., Synthesis of tungsten carbide–carbon nanomaterials by combustion reaction, Mater. Chem. Phys., 2008, vol. 110, pp. 454–456.

    Article  CAS  Google Scholar 

  8. Mehrabani, H.Y., Babakhani, A., and Vahdati-Khaki, J., A discussion on the formation mechanism of tungsten carbides during mechanical milling of CaWO4 MgC mixtures, J. Alloys Compd., 2019, vol. 781, pp. 397–406.

    Article  CAS  Google Scholar 

  9. Zhu, F., Chen, Z.-L., Liu, K.-Z., Liang, W., and Zhang, Z., Deposition of thin tungsten carbide films by dual ion beam sputtering deposition, Vacuum, 2018, vol. 157, pp. 45–50.

    Article  CAS  Google Scholar 

  10. Fenggang, Z., Tungsten carbide phase transformation under non-equilibrium solidification of high intensity pulsed ion and electron beams, Vacuum, 2019, vol. 159, pp. 254–260.

    Article  Google Scholar 

  11. Zhang, H., Yu, X., Nie, Z., Tan, C., Wang, F., Cai, H., Li, Y., Wang, F., and Cai, H., Microstructure and growth mechanism of tungsten carbide coatings by atmospheric CVD, Surf. Coat. Technol., 2018, vol. 344, pp. 85–92.

    Article  CAS  Google Scholar 

  12. Jiang, Y., Yang, J.F., Zhuang, Z., Liu, R., Zhou, Y., Wang, X.P., and Fang, Q.F., Characterization and properties of tungsten carbide coatings fabricated by SPS technique, J. Nucl. Mater., 2013, vol. 433, pp. 449–454.

    Article  CAS  Google Scholar 

  13. Saito, Y., Matsumoto, T., and Nishikubo, K., Encapsulation of carbides of chromium, molybdenum and tungsten in carbon nanocapsules by arc discharge, J. Cryst. Growth, 1997, vol. 172, pp. 163–170.

    Article  CAS  Google Scholar 

  14. Su, Y., Wei, H., Li, T., Geng, H., and Zhang, Y., Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge, Mater. Res. Bull., 2014, vol. 50, pp. 23–25.

    Article  CAS  Google Scholar 

  15. Pak, A. Ya., Shanenkov, I.I., Mamontov, G.Y., and Kokorina, A.I., Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge, Int. J. Refract. Met. Hard Mater., 2020, vol. 93, art. ID 105343.

    Article  CAS  Google Scholar 

  16. Pak, A., Ivashutenko, A., Zakharova, A., and Vassilyeva, Yu., Cubic SiC nanowire synthesis by DC arc discharge under ambient air conditions, Surf. Coat. Technol., 2020, vol. 387, art. ID 125554.

  17. Arora, N. and Sharma, N.N., Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond Relat. Mater., 2014, vol. 50, pp. 135–150.

    Article  CAS  Google Scholar 

  18. Predel, B. and Madelung, O., C–W (carbon–tungsten), Springer Mater., 1992, vol. 5, pp. 1–3.

    Google Scholar 

  19. Schur, D.V., Dubovoy, A.G., Zaginaichenko, S.Yu., Adejev, V.M., Kotko, A.V., Bogolepov, V.A., Savenko, A.F., and Zolotarenko, A.D., Production of carbon nanostructures by arc synthesis in the liquid phase, Carbon, 2007, vol. 45, pp. 1322–1329.

    Article  CAS  Google Scholar 

  20. Liang, F., Tanaka, M., Choi, S., and Watanabe, T., Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge, Carbon, 2017, vol. 117, pp. 100–111.

    Article  CAS  Google Scholar 

  21. Zaikovskii, A.V., Mal’tsev, V.A., and Novopashin, S.A., Synthesis of tungsten carbide nanoparticles in WO3 pyrolysis in a plasma arc, J. Eng. Thermophys., 2013, vol. 22, no. 1, pp. 77–85.

    Article  CAS  Google Scholar 

  22. Chen, Z., Qin, M., Chen, P., Jia, B., He, Q., and Qu, X., Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2016, vol. 41, no. 30, pp. 13005–13013.

    Article  CAS  Google Scholar 

  23. Dyjak, S., Norek, M., Polański, M., Cudziło, S., and Bystrzycki, J., A simple method of synthesis and surface purification of titanium carbide powder, Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 87–91.

    Article  CAS  Google Scholar 

  24. Fang, L., Sheng, L., An, K., Yu, L., Ren, W., Ando, Y., and Zhao, X., Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge, Phys. E (Amsterdam), 2013, vol. 50, pp. 116–121.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Transmission electron microscopy was performed on the equipment of the Nanocenter of the Tomsk Polytechnical University.

Funding

This study was supported by the Russian Scientific Foundation (grant no. 19-79-00086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Pak.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, O.Y., Yakich, T.Y., Kokorina, A.I. et al. Synthesis of Crystalline Tungsten Carbide Phases under the Influence of Atmospheric Electrical Arc Plasma on Tungsten Oxide. J. Superhard Mater. 43, 191–197 (2021). https://doi.org/10.3103/S1063457621030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621030072

Keywords:

Navigation