Skip to main content
Log in

Effect of CrB2 on the Microstructure, Properties, and Wear Resistance of Sintered Composite and the Diamond Retention in Fe–Cu–Ni–Sn Matrix

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Using the method of powder metallurgy, we studied the effect of CrB2 additives (0–8 wt %) on the formation of the structure of the diamond–matrix transition zone and the matrix material, microhardness, elastic modulus, and fixation of diamond grains in a Fe–Cu–Ni–Sn matrix and determined the wear resistance of sintered composite diamond-containing materials (DCMs). Micromechanical and tribological tests were carried out using composite samples 10 mm in diameter and 5 mm thick. The transition zone structure depends significantly on the concentration of CrB2 in the composite and has a different nature than the structure of the matrix material. The structure of the DCM transition zone based on the 51Fe–32Cu–9Ni–8Sn matrix consists of Cu, α-Fe, and Ni3Sn phases with graphite inclusions, and with the addition of CrB2, it consists of the α-Fe phase and Fe3C, Cr7C3, and Cr3C2 carbide layers without graphite inclusions. The hardness and elastic modulus of the matrix material of the sintered composites linearly increase with an increase in the concentration of CrB2 in their composition, while the wear rate decreases. The addition of 2 wt % of CrB2 to the 51Fe–32Cu–9Ni–8Sn composite increases hardness from 4.475 to 7.896 GPa and an elastic modulus from 86.6 to 107.5 GPa and decreases the wear rate from 21.61 × 10–6 to 10.04 × 10–6 mm3 N–1 m–1. The mechanism for improving the mechanical properties and decreasing the wear resistance of DCM samples containing CrB2 additive consists in grain refining of the matrix phases of iron and copper from 5–40 to 2–10 μm and in binding carbon released during graphitization of diamond grains into nanosized carbides Fe3C, Cr7C3, and Cr3C2. This, in turn, increases the ability of the matrix material to keep diamond grains from falling out during the operation of DCMs. The coarse-grained structure and the formation of graphite inclusions in the diamond–matrix transition zone explain poor mechanical and tribological properties of the initial (51Fe–32Cu–9Ni–8Sn) composite, causing its premature destruction and falling out of diamond grains from the DCM matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Hereinafter, the composition of the DCM is given in wt %.

REFERENCES

  1. Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review), Sverkhtverd. Mater., 2006, vol. 28, no. 6, pp. 3–17.

    Google Scholar 

  2. Borowiecka-Jamrozek, J. and Konstanty, J., Microstructure and mechanical properties a new iron-base material used for the fabrication of sintered diamond tools, Adv. Mater. Res., 2014, vol. 1052, pp. 520–523.

    Article  CAS  Google Scholar 

  3. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond containing composites used in drilling and stone working tools (a review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  4. Dai, Q.L., Luo, C.B., Xu, X.P., and Wang, Y.C., Effects of rare earth and sintering temperature on the transverse rupture strength of Fe-based diamond composites, J. Mater. Process. Technol., 2002, vol. 129, pp. 427–430.

    Article  CAS  Google Scholar 

  5. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Rupasov, S.I., Andreev, V.A., and Sevast’yanov, P.V., Development and application of the Cu–Ni–Fe–Sn based dispersion hardened bond for cutting tools of superhard materials, J. Superhard Mater., 2012, vol. 34, no. 4, pp. 270–280.

    Article  Google Scholar 

  6. Mechnyk, V.A., Diamond–Fe–Cu–Ni–Sn composite materials with predictable stable characteristics, Mater. Sci., 2013, vol. 48, no. 5, pp. 591–600.

    Article  CAS  Google Scholar 

  7. Dai, H., Wang, L., Zhang, J., Liu, Y., Wang, Y., Wang, L., and Wan, X., Iron based partially pre-alloyed powders as matrix materials for diamond tools, Powder Metall., 2015, vol. 58, pp. 83–86.

    Article  CAS  Google Scholar 

  8. Wang, Z., Gao, K., Sun, Y., Zhang, Z., and Ren, L., Effects of bionic units in different scales on the wear behavior of bionic impregnated diamond bits, J. Bionic Eng., 2016, vol. 13, no. 4, pp. 659–668.

    Article  Google Scholar 

  9. Li, M., Sun, Y., Meng, Q., Wu, H., Gao, K., and Liu, B., Fabrication of Fe-based diamond composites by pressureless infiltration, Materials, 2016, vol. 9, p. 1006.

    Article  PubMed Central  CAS  Google Scholar 

  10. Gevorkyan, E., Mechnik, V., Bondarenko, N., Vovk, R., Lytovchenko, S., Chishkala, V., and Melnik, O., Peculiarities of obtaining diamond–(Fe–Cu–Ni–Sn) hot pressing, Funct. Mater., 2017. no. 24, pp. 31–45.

  11. Hou, M., Guo, S., Yang, L., Gao, J., Peng, J., Hu, T., Wang, L., and Ye, X., Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering, Powder Technol., 2018, vol. 338, pp. 36–43.

    Article  CAS  Google Scholar 

  12. Bondarenko, M.O., Mechnik, V.A., and Suprun, M.V., Shrinkage and shrinkage rate behavior in Cdiamond–Fe–Cu–Ni–Sn–CrB2 system during hot pressing of pressureless-sintered compacts, J. Superhard Mater., 2009, vol. 31, no. 4, pp. 232–240.

    Article  Google Scholar 

  13. Mechnik, V.A., Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    Article  CAS  Google Scholar 

  14. Borowiecka-Jamrozek, J.M., Konstanty, J., and Lachowski, J., The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools, Arch. Found. Eng., 2018, vol. 18, no. 1, pp. 5–8.

    CAS  Google Scholar 

  15. Nitkiewicz, Z. and Świerzy, M., Tin influence on diamond-metal matrix hot pressed tools for stone cutting, J. Mater. Process. Technol., 2006, vol. 175, nos. 1–3, pp. 306–315.

    Article  CAS  Google Scholar 

  16. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Lyashenko, B.A., The role of structure formation in forming the physicomechanical properties of composites of the diamond–(Fe–Cu–Ni–Sn) system, J. Frict. Wear, 2016, vol. 37, no. 4, pp. 377–384.

    Article  Google Scholar 

  17. Dinaharan, I., Sathiskumar, R., and Murugan, N., Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, J. Mater. Res. Technol., 2016, vol. 5, no. 4, pp. 302–316.

    Article  CAS  Google Scholar 

  18. Hodge, A.M., Wang, Y.M., and Barbee, T.W., Large-scale production of nano-twinned, ultrafine-grained copper, Mater. Sci. Eng., A, 2006, vol. 429, nos. 1–2, pp. 272–276.

    Article  CAS  Google Scholar 

  19. Levashov, E., Kurbatkina, V., and Zaytsev, A., Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles, Materials, 2010, vol. 3, no. 1, pp. 97–109.

    Article  CAS  Google Scholar 

  20. Shaw, L.L., Villegas, J., Huang, J.-Y., and Chen, S., Strengthening via deformation twinning in a nickel alloy, Mater. Sci. Eng., A, 2008, vol. 480, nos. 1–2, pp. 75–83.

    Article  CAS  Google Scholar 

  21. Konstanty, J., Powder Metallurgy Diamond Tools, Amsterdam: Elsevier, 2005.

    Google Scholar 

  22. Uemura, M., An analysis of the catalysis of Fe, Ni, or Co on the wear of diamonds, Tribol. Int., 2004, vol. 37, pp. 887–892.

    Article  CAS  Google Scholar 

  23. Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Levashov, E.A., Kurbatkina, V.V., Loginov, P.A., Rupasov, S.I., and Andreev, V.A., Interaction of diamond grains with nanosized alloying agents in metal–matrix composites as studied by Raman spectroscopy, Diamond Relat. Mater., 2013, vol. 38, pp. 59–62.

    Article  CAS  Google Scholar 

  24. Yılmaz, N.G., Goktan, R.M., and Kibici, Y., An investigation of the petrographic and physic-mechanical properties of true granites influencing diamond tool wear performance and development of a new wear index, Wear, 2011, vol. 271, pp. 960–969.

    Article  CAS  Google Scholar 

  25. del Villar, M., Muro, P., Sánchez, J.M., Iturriza, I., and Castro, F., Consolidation of diamond tools using Cu–Co–Fe based alloys as metallic binders, Powder Metall., 2001, vol. 44, pp. 82–90.

    Article  CAS  Google Scholar 

  26. Li, W., Zhan, J., Wang, S., Dong, H., Li, Y., and Liu, Y., Characterizations and mechanical properties of impregnated diamond segment using Cu–Fe–Co metal matrix, Rare Met., 2012, vol. 31, pp. 81–87.

    Article  CAS  Google Scholar 

  27. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components, Part 1: Model, Trenie Iznos., 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  28. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components, Part 2: Analysis, Trenie Iznos., 2002, vol. 23, no. 4, pp. 393–396.

    CAS  Google Scholar 

  29. Aleksandrov, V.A., Akekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sov. J. Superhard Mater., 1984, vol. 6, no. 6, pp. 46–52.

    Google Scholar 

  30. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  31. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of heterogeneous diamond wheel under conditions of convectional heat transfer. Part 2, Trenie Iznos, 1994, vol. 15, no. 2, pp. 196–201.

    Google Scholar 

  32. Aleksandrov, V.A. and Mechnik, V.A., Effect of heat conduction of diamonds and heat-exchange coefficient on contact temperature and wear of cutting disks, Trenie Iznos, 1993, vol. 14, no. 6, pp. 1115–1117.

    CAS  Google Scholar 

  33. Dutka, V.A., Kolodnitskij, V.M., Zabolotnyj, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, vol. 26, no. 2, pp. 66–73.

  34. Dutka, V.A., Kolodnitskij, V.M., Mel’nichuk, O.V., and Zabolotnyj, S.D., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2005, vol. 27, no. 1, pp. 67–77.

    Google Scholar 

  35. Sveshnikov, I.A. and Kolodnitsky, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd. Mater., 2006, vol. 28, no. 4, pp. 70–75.

    Google Scholar 

  36. Franca, L.F.P., Mostofi, M., and Richard, T., Interface laws for impregnated diamond tools for a given state of wear, Int. J. Rock Mech. Mining Sci., 2015, vol. 73, pp. 184–193.

    Article  Google Scholar 

  37. Wang, J., Zhang, S., and Peng, F., Influence mechanism of hard brittle grits on the drilling performance of diamond bit, J. Ann. Chim. Sci. Mater., 2018, vol. 42, no. 2, pp. 209–220.

    Article  Google Scholar 

  38. Zhang, Z. and Chen, D.L., Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scr. Mater., 2006, vol. 54, no. 7, pp. 1321–1326.

    Article  CAS  Google Scholar 

  39. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., Nesterenko, Yu.V., Kuzin, N.O., Zakiev, I.M., and Gevorkyan, E.S., A study of microstructure of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    Article  CAS  Google Scholar 

  40. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Storchak, M., Dub, S.N., and Kuzin, N.O., Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods, Tribol. Ind., 2019, vol. 41, no. 2, pp. 188–198.

    Article  Google Scholar 

  41. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Formation of Fe–Cu–Ni–Sn–VN nanocrystalline matrix by vacuum hot pressing for diamond-containing composite. Mechanical and tribological properties, J. Superhard Mater., 2019, vol. 41, no 6, pp. 388–401.

    Article  Google Scholar 

  42. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Effect of vacuum hot pressing temperature on the mechanical and tribological properties of the Fe–Cu–Ni–Sn–VN composites, Powder Metall. Met. Ceram., 2020, vol. 58, nos. 11–12, pp. 679–691.

    Article  CAS  Google Scholar 

  43. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Gevorkian, E.S., Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system, J. Frict. Wear, 2018, vol. 39, no. 2, pp. 108–113.

    Article  Google Scholar 

  44. Han, Y., Zhang, S., Bai, R., Zhou, H., Su, Z., Wu, J., and Wang, J., Effect of nano-vanadium nitride on microstructure and properties of sintered Fe–Cu-based diamond composites, Int. J. Refract. Met. Hard Mater., 2020, vol. 91, art. 105256.

    Article  CAS  Google Scholar 

  45. Mechnyk, V.A., Regularities of structure formation in diamond–Fe–Cu–Ni–Sn–CrB2 systems, Mater. Sci., 2013, vol. 49, no. 1, pp. 93–101.

    Article  CAS  Google Scholar 

  46. Mechnik, V.A., Effect of hot recompaction parameters on the structure and properties of diamond–(Fe–Cu–Ni–Sn–CrB2) composites, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 11–12, pp. 709–721.

    Article  CAS  Google Scholar 

  47. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., and Yutskevych, S.S., Mechanical and tribological properties of Fe−Cu−Ni−Sn materials with different amounts of CrB2 used as matrices for diamond-containing composites, J. Superhard Mater., 2020, vol. 42, no. 4, pp. 251–263.

    Article  Google Scholar 

  48. Kraus, W. and Nolze, G., Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 1996, vol. 29, pp. 301–303.

    Article  CAS  Google Scholar 

  49. Selected Powder Diffraction Data for Education Straining: Search Manual and Data Cards, Swarthmore, PA: Int. Centre Diffraction Data, 1988.

  50. Zakiev, I. and Aznakayev, E., Micro Gamma: the device for the estimation of physico-mechanical properties of materials, J. Assoc. Lab. Autom., 2002, vol. 7, no. 5, pp. 44–45.

    Google Scholar 

  51. Storchak, M., Zakiev, I., and Träris, L., Mechanical properties of subsurface layers in the machining of the titanium alloy Ti10V2Fe3Al, J. Mech. Sci. Technol., 2018, vol. 32, pp. 315–322.

    Article  Google Scholar 

  52. Vasil’ev, M.O., Mordyuk, B.M., Voloshko, S.M., Zakiev, V.I., Burmak, A.P., and Pefti, D.V., Hardening of surface layers of Cu–39Zn–1Pb brass at holding and high-frequency impact deformation in liquid nitrogen, Metallofiz. Nov. Tekhnol., 2019, vol. 41, no 11, pp. 1499–1517.

    Article  CAS  Google Scholar 

  53. Oliver, W.C. and Pharr, G.M., An improved for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564−1583.

    Article  CAS  Google Scholar 

  54. Firstov, S.A., Ignatovich, S.R., and Zakiev, I.M., Size effect in the micro- and nanoindentation and its compensation with regard for the specific features of initial contact, Strength Mater., 2009, vol. 41, no. 2, pp. 147–155.

    Article  Google Scholar 

  55. Vasylyev, M.A., Mordyuk, B.N., Sidorenko, S.I., Voloshko, S.M., Burmak, A.P., Kruhlov, I.O., and Zakiev, V.I., Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy, Surf. Coat. Technol., 2019, vol. 361, pp. 413–424.

    Article  CAS  Google Scholar 

  56. Zakiev, V., Markovsky, A., Aznakayev, E., Zakiev, I., and Gursky, E., Micro-mechanical properties of bio-materials, Proc. SPIE, 2005, vol. 5959.

  57. Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I., and Mocharskyi, V.S., Fracture mechanism analysis of the heat-resistant steel 15Kh2MFA(II) after laser shock-wave processing, J. Failure Anal. Prev., 2014, vol. 14, no. 5, pp. 668–674.

    Article  Google Scholar 

  58. Zakiev, I., Gogotsi, G.A., Storchak, M., and Zakiev, V., Glass fracture during micro-scratching, Surfaces, 2020, vol. 3, pp. 211–224.

    Article  CAS  Google Scholar 

  59. Fuertes, V., Cabrera, M.J., Seores, J., Muñoz, D., Fernández, J.F., and Enríquez, E., Enhanced wear resistance of engineered glass-ceramic by nanostructured self-lubrication, Mater. Des., 2019, vol. 168, art. 107623.

    Article  CAS  Google Scholar 

  60. ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, West Conshohocken, PA: ASTM Int., 2017.

  61. ASTM G171-03: Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, West Conshohocken, PA: ASTM Int., 2017.

  62. Kovalchenko, A.M., Goel, S., Zakiev, I.M., Pashchenko, E.A., and Al-Sayegh, R., Suppressing scratch-induced brittle fracture in silicon by geometric design modification of the abrasive grits, J. Mater. Res. Technol., 2019, vol. 8, no. 1, pp. 703–712.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported within the framework of state budget research topics under the coordination plans of the Ministry of Education and Science of Ukraine (state registration no. 0120U100105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M. et al. Effect of CrB2 on the Microstructure, Properties, and Wear Resistance of Sintered Composite and the Diamond Retention in Fe–Cu–Ni–Sn Matrix. J. Superhard Mater. 43, 175–190 (2021). https://doi.org/10.3103/S1063457621030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621030060

Keywords:

Navigation