Advertisement

Journal of Superhard Materials

, Volume 40, Issue 3, pp 164–169 | Cite as

A Potential Superhard Material m-BCN

Production, Structure, Properties
  • 5 Downloads

Abstract

We here propose a new superhard material m-BCN with comparable Vickers hardness to cBN by the use of first-principles calculations. The calculations show that the mentioned m-BCN is a thermodynamically and kinetically stable semiconductor. Hydrostatic calculation shows that it is anisotropic and its incompressibility is very close to cBN. Structural analysis shows that its excellent mechanical property and thermodynamically stability are inherited from diamond and cBN. These results provide a new clue to find new superhard phase.

Keywords

m-BCN mechanical properties electronic structure Vickers hardness hydrostatic calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haines, J., Léger, J.M., and Bocquillon, G., Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 2001, vol. 31, pp. 1–23.CrossRefGoogle Scholar
  2. 2.
    Andrievski, R.A., Superhard materials based on nanostructured high-melting point compounds: achievements and perspectives, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 447–452.CrossRefGoogle Scholar
  3. 3.
    Gao, F.M., He, J.L., Wu, E.D., Liu, S.M., Yu, D.L., Li, D.C., Zhang, S.Y., and Tian, Y.J., Hardness of covalent crystals, Phys. Rev. Lett., 2003, vol. 91, pp. 015502.CrossRefGoogle Scholar
  4. 4.
    Huang, Q., Yu, D.L., Xu, B., Hu, W.T., Ma, Y.M., Wang, Y.B., Zhao, Z.S., Wen, B., He, J. L., Liu, Z. Y., and Tian, Y.J., Nanotwinned diamond with unprecedented hardness and stability, Nature, 2014, vol. 510, pp. 250–253.CrossRefGoogle Scholar
  5. 5.
    Zhou, R.L. and Zeng, X.C., Polymorphic Phases of sp3-hybridized carbon under cold compression, J. Am. Chem. Soc., 2012, vol. 134, pp. 7530–7538.CrossRefGoogle Scholar
  6. 6.
    Yamanaka, S., Kini, N.S., Kubo, A., Jida, S., and Kuramoto, H., Topochemical 3D polymerization of C60 under high pressure at elevated temperatures, J. Am. Chem. Soc., 2008, vol. 130, pp. 4303–4309.CrossRefGoogle Scholar
  7. 7.
    He, C.Y., Sun, L.Z., Zhang, C.X., Peng, X.Y., Zhang, K.W., and Zhong, J.X., Z–BN: a novel superhard boron nitride phase, Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 10967–10971.CrossRefGoogle Scholar
  8. 8.
    Huang, Q., Yu, D.L., Zhao, Z.S., Fu, S.W., Xiong, M., Wang, Q.Q., Gao, Y.F., Luo, K., He, J.L., and Tian, Y.J., First-Principles study of O–BN: A sp3 bonding boron nitride allotrope, J. Appl. Phys., 2012, vol. 112, no. 5, art. 053518.Google Scholar
  9. 9.
    Tian, F.B., Wang, J.H., He, Z., Ma, Y.M., Wang, L.C., Cui, T., Chen, C.B., Liu, B.B., and Zou, G.T., Superhard semiconducting C3N2 compounds predicted via first-principles calculations, Phys. Rev. B., 2008, vol. 78, pp. 235431.CrossRefGoogle Scholar
  10. 10.
    Tian, Y.J., Xu, B., Yu, D.L., Ma, Y.M., Wang, Y.B., Jiang, Y.B., Hu, W.T., Tang, C.C., Gao, Y.F., Luo, K., Zhao, Z.S., Wang, L.M., Wen, B., He, J.L., and Liu, Z.Y., Ultrahard nanotwinned cubic boron nitride, Nature, 2013, vol. 493, pp. 385–388.CrossRefGoogle Scholar
  11. 11.
    Solozhenko, V.L., Kurakevych, O.O., and Godec, Y. L., Creation of nonostructures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater., 2012, vol. 24, pp. 1540–1544.CrossRefGoogle Scholar
  12. 12.
    Fan, X.F., Wu, H.Y., Shen, Z.X., and Kuo, J.L., A first-principles study on the structure, stability and hardness of cubic BC2N, Diamond Relat. Mater., 2009, vol. 18, pp. 1278–1282.CrossRefGoogle Scholar
  13. 13.
    Wang, H.B., Li, Q., Wang, H., Liu, H.Y., Cui, T., and Ma, Y.M., Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4, J. Phys. Chem. C, 2010, vol. 114, pp. 8609–8613.CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Sun, H., and Chen, C.F., Superhard cubic BC2N compared to diamond, Phys. Rev. Lett., 2004, vol. 93, pp. 195504.CrossRefGoogle Scholar
  15. 15.
    Zhou, X.F., Sun, J., Fan, Y.X., Chen, J., and Wang, H.T., Most likely phase of superhard bc2n by ab inito calculations, Phys. Rev. B., 2007, vol. 76, no. 10, art. 100101.Google Scholar
  16. 16.
    Solozhenko, V. L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Synthesis of superhard cubic BC2N, Appl. Phys. Lett., 2001, vol. 78, pp. 1385–1387.CrossRefGoogle Scholar
  17. 17.
    Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragán, F., and Alvarez, S., Covalent radii revisited, Dalton Trans., 2008, pp. 2832–2838.Google Scholar
  18. 18.
    Wang, Y.C., Lv, J., Zhu, L., and Ma, Y.M., CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun., 2012, vol. 183, pp. 2063–2070.CrossRefGoogle Scholar
  19. 19.
    Wang, H., Wang, Y.C., Lv, J., Li, Q., Zhang, L. J., and Ma, Y.M., CALYPSO structure prediction method and its wide application, Comput. Mater. Sci., 2016, vol. 112, pp. 406–415.CrossRefGoogle Scholar
  20. 20.
    Umemoto, K., Wentzcovitch, R.M., Saito, S., and Miyake, T., Body-centered tetragonal C4: a viable sp3 carbon allotrope, Phys. Rev. Lett., 2010, vol. 104, pp. 125504.CrossRefGoogle Scholar
  21. 21.
    Zhao, Z.S., Xu, B., Zhou, X.F., Wang, L.M., Wen, B., He, J.L., Liu, Z.Y., Wang, H.T., and Tian, Y.J., Novel Superhard Carbon: C-Centered Orthorhombic C8, Phys. Rev. Lett., 2011, vol. 107, pp. 215502.CrossRefGoogle Scholar
  22. 22.
    Wang, J.T., Chen, C.F., and Kawazoe, Y., Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett., 2011, vol. 106, pp. 075501.CrossRefGoogle Scholar
  23. 23.
    Niu, H.Y., Chen, X.Q., Wang, S.B., Li, D.Z., Mao, W.L., and Li, Y.Y., Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett., 2012, vol. 108, pp. 135501.CrossRefGoogle Scholar
  24. 24.
    Li, Q., Ma, Y.M., Oganov, A.R., Wang, H.B., Wang, H., Xu, Y., Cui, T., Mao, H.K., and Zou, G.T., Superhard monoclinic polymorph of carbon, Phys. Rev. Lett., 2009, vol. 102, pp. 175506.CrossRefGoogle Scholar
  25. 25.
    Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B., 2007, vol. 76, pp. 054115.CrossRefGoogle Scholar
  26. 26.
    Chen, X.Q., Niu, H.Y., Li, D.Z., and Li, Y.Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, pp. 1275–1281.CrossRefGoogle Scholar
  27. 27.
    Laprise, R., The Euler equations of motion with hydrostatic pressure as independent variable, LAPRISE, 1992, vol. 120, pp. 197–207.Google Scholar
  28. 28.
    Telling, R.H., Pickard, C.J., Payne, M.C., and Field, J.E., Theoretical strength and cleavage of diamond, Phys. Rev. Lett., 2000, vol. 84, pp. 5160–5163.CrossRefGoogle Scholar
  29. 29.
    Zhou, X.-F. Qian, G.-R. Dong, X. Zhang, L. Tian, Y., and Wang, H.-T., Ab initio study of the formation of transparent carbon under pressure, Phys. Rev. B, 2010, vol. 82, pp. 134126.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations