Advertisement

Journal of Superhard Materials

, Volume 38, Issue 4, pp 235–240 | Cite as

Field emission properties of pointed cathodes based on graphene films on SiC

  • R. V. Konakova
  • O. B. OkhrimenkoEmail author
  • A. F. Kolomys
  • V. V. Strel’chuk
  • A. M. Svetlichnyi
  • O. A. Ageev
  • E. Yu. Volkov
  • A. S. Kolomiitsev
  • I. L. Zhityaev
  • O. B. Spiridonov
Production, Structure, Properties

Abstract

Electrical properties of low-threshold field emission cathodes produced by growth nanocluster graphene films on the pointed surface of heavily doped n +SiC by sublimation epitaxy have been considered. The quality of the graphene coating has been assessed based on the morphological studies and Raman spectroscopy. Using the volt–ampere characteristics the work function from a pointed cathode with graphene coating was calculated (∼ 0.76 eV). Such a low value of the work function is explained on the assumptions that the graphene film has the nanocluster nature and the sources of the field emission are graphene nanoclusters.

Keywords

pointed cathode graphene silicon carbide work function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sominsky, G.G., Tumareva, T.A., Taradaev, E.P., Mishin, M.V., and Stepanova, A.N., Multiple-point semiconductive field emitters with double-layer protective coatings of a new type, JTP, 2015, vol. 85, no. 1, pp. 138–141.Google Scholar
  2. 2.
    Gulyaev, Yu. V., Carbon nanotube structures—a new material for emissive electronics, Vestnik Russian Acad. Sciences, 2003, vol. 73, no. 5, pp. 389–391.Google Scholar
  3. 3.
    Fursey, G.N., Field Emission in Vacuum Microelectronics, New York, Boston, Dordrecht, London, Moscow: Kluver Academic/Plenum Published, 2005.Google Scholar
  4. 4.
    Acik, M. and Chabal, Y.J., Nature of graphene edges: a review, Japanese J. Appl. Phys., 2011, vol. 50, art. 070101.Google Scholar
  5. 5.
    Kolokol’tsev, S.N., Uglerodnye materially. Svoistva, technologiya, izmereniya (Carbon materials. Properties, techno-logy, measurements), Dolgoprudny, RF: Izd. Dom “Intellect”, 2012.Google Scholar
  6. 6.
    Gubin, S.P. and Tkachev, S.V., Grafen i rodstvennye nanoformy ugleroda (Graphene and related nanoforms of carbon), Moscow: Knizhnyi Dom Librokom, 2012.Google Scholar
  7. 7.
    Kumar, S., Duesberg, G.S., Pratapb, R., and Raghavan, S., Graphene field emission devices, App. Phys. Lett., 2014, vol. 105, art. 103107.Google Scholar
  8. 8.
    Svetlichny, A.M., Spiridonov, O.B., Volkov, E.Yu., Linets, L.G., and Grigoriev, M.N., Assessment of characteristics of field emission nanostructures based on silicon and silicon carbide, Izvestiya YuFU. Tekhnical Sciences, 2011, no. 4, pp. 27–35.Google Scholar
  9. 9.
    Okhrimenko, O.B., Konakova, R.V., Svetlichny, A.M., Spiridonov, O.B., and Volkov, E.Yu., Assessment of the field emission properties of nanostructures based on silicon carbide and graphene, Nanosystems, Nanomaterials, Nanotechnologies, 2012, vol. 10, no. 2, pp. 335–342.Google Scholar
  10. 10.
    Lebedev, A.A., Kotousova, I.S., Lavrent’ev, A.A., Lebedev, S.P., Makarenko, I.V., Petrov, V.N., and Titkov, A.N., Formation of nanocarbon films on the SiC surface by sublimation in vacuum, Physics of the Solid State, 2009, vol. 51, no. 4, pp. 783–786.Google Scholar
  11. 11.
    Lebedev, A.A., Kotousova, I.S., Lavrent’ev, A.V., Lebedev, S.P., Dement’ev, P.A., Petrov, V.N., Smirnov, A.N., and Titkov, A.N., Investigation of multigraphene films produced on the SiC surface by sublimation, Ibid., 2010, vol. 52, no. 4, 799–805.Google Scholar
  12. 12.
    Konakova, R.V., Kolomys, A.F., Okhrimenko, O.B., Strel’chuk, V.V., Volkov, E.Yu., Grigor’ev, M.N., Svetlichny, A.M., and Spiridonov, O.B., Comparative characteristics of Raman spectra of graphene films on conductive and semi-insulating substrates 6H–SiC, PTS, 2013, vol. 47, no. 6, pp. 802–804.Google Scholar
  13. 13.
    Luchinin, V.V. and Savenko, A.Yu., Nanosized ion-beam technologies, in (Nanotekhnologiya: fizika, protsessy, diagnostika, pribory) Nanotechnology: physics, processes, diagnostics, devices, Luchinin, V.V. and Tairov, Yu.M., Eds., Moscow: FIZMATLIT, 2006, pp. 284–304.Google Scholar
  14. 14.
    Konoplev, B.G., Ageev, O.A., and Kolomiitsev, A.S., Formation of nanosize structures on a silicon substrate by the method of focused ion beams, Semiconductors, 2011, vol. 45, no. 13, pp. 1709–1712.CrossRefGoogle Scholar
  15. 15.
    Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 2007, vol. 143, no. 1–2, pp. 47–57.CrossRefGoogle Scholar
  16. 16.
    Hibino, H., Kageshima, H., and Nagase, M., Epitaxial few-layer graphene: toward single crystal growth, J. Phys. D: Appl. Phys., 2010, vol. 43, art. 374005.Google Scholar
  17. 17.
    Fomenko, V.S., Emissionnye svoistva materialov: Sprav., (Emission properties of materials: Reference book), Kiev: Naukova Dumka, 1981.Google Scholar
  18. 18.
    Fursey, G.N., Polyakov, M.A., Kantonistov, A.A., Yafyasov, A.M., Pavlov, B.S., and Bozhevol’nov, V.B., Field and explosive emissions from graphene-like structures, J. Techn. Phys., 2013, vol. 83, no. 6. pp.71–77.Google Scholar
  19. 19.
    Obraztsov, A.N., Volkov, A.P., and Pavlovsky, I. Yu., Mechanism of the electron cold emission from carbon materials, Letters JETPh, 1998, vol. 68, no. 1, pp. 56–60.Google Scholar
  20. 20.
    Oleinik, V.F., Bulgach, V.L., Valyaev, V.V., Zorenko, A.V., Mironov, D.V., and Chaika, V.E., Electronnye pribory millimetrovogo and submillimetrovogo diapazonov na osnove nanotekhnologii (Electronic devices of millimeter and submillimeter ranges based on nanotechnologies), Kiev: GUIKT, 2004.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • R. V. Konakova
    • 1
  • O. B. Okhrimenko
    • 1
    Email author
  • A. F. Kolomys
    • 1
  • V. V. Strel’chuk
    • 1
  • A. M. Svetlichnyi
    • 2
  • O. A. Ageev
    • 2
  • E. Yu. Volkov
    • 3
  • A. S. Kolomiitsev
    • 2
  • I. L. Zhityaev
    • 2
  • O. B. Spiridonov
    • 4
  1. 1.Lashkarev Institute of Physics of SemiconductorsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Nanotechnologies, Electronics, and Instrument MakingSouth Federal UniversityTaganrogRF
  3. 3.South Laser Innovative and Technological CentreTaganrogRF
  4. 4.Scientific–Design Department for Modeling and Control SystemsSouth Federal UniversityTaganrogRF

Personalised recommendations