Journal of Superhard Materials

, Volume 38, Issue 2, pp 71–84 | Cite as

Surface morphology and structural types of natural impact apographitic diamonds

  • V. KvasnytsyaEmail author
  • R. Wirth
  • S. Piazolo
  • D. E. Jacob
  • P. Trimby
Production, Structure, Properties


External and internal morphologies of natural impact apographitic diamonds (paramorphoses) have been studied. The (0001) surface morphology of the paramorphoses reflects their phase composition and the structural relationship of its constituting phases. Growth and etch figures together with the elements of crystal symmetry of lonsdaleite and diamond are developed on these surfaces. The crystal size of lonsdaleite is up to 100 nm, and that of diamond is up to 300 nm. Two types of structural relations between graphite, lonsdaleite, and diamond in the paramorphoses are observed: the first type (black, black-gray, colorless and yellowish paramorphoses): the (0001) graphite face is parallel to the (100) lonsdaleite face and parallel to (111) diamond; the second type (milky-white paramorphoses): the (0001) graphite is parallel to the (100) lonsdaleite and parallel to the (112) diamond. The first type of the paramorphoses contains lonsdaleite, diamond, graphite or diamond, lonsdaleite, the second type of the paramorphoses contains predominantly diamond. The direct phase transition of graphite → lonsdaleite and/or graphite →diamond occurred in the paramorphoses of the first type. A successive phase transition graphite → lonsdaleite → diamond was observed in the paramorphoses of the second type. The structure of the paramorphoses of this type shows characteristic features of recrystallization.


natural impact apographitic diamond graphite lonsdaleite diamond surface morphology structure type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valter, A.A., Erjomenko, G.K., Kvasnitsa, V.N., and Polkanov, Yu.A., Udarno-metamorfogennye mineraly ygleroda(Shock-metamorphogenetic carbon minerals), Kiev: Naukova Dumka, 1992.Google Scholar
  2. 2.
    Vishnevsky, S.A., Afanasyev, V.P., Argunov, K.P., and Palchik, N.A., Impactnye almazy: ikh osobennosti, proiskhozhdenie i znachenie (Impact diamonds: their features, origin and significance), Novosibirsk: izd. SIC Siberian Branch of RAS, 1997.Google Scholar
  3. 3.
    Langenhorst, F., Shafranovsky, G.I., Masaitis, V.L., and Koivisto, M., Discovery of impact diamonds in a Fennoscandian crater and evidence for their genesis by solid-state transformation, Geology, 1999, vol. 27, no. 8, pp. 747–750.CrossRefGoogle Scholar
  4. 4.
    Koeberl, C., Masaitis, V.L., Shafranovsky, G.I., et al., Diamonds from the Popigai impact structure, Geology, 1997, vol. 25, no. 11, pp. 967–970.CrossRefGoogle Scholar
  5. 5.
    Gorogotskaya, L.I., Kvasnitsa, V.N., and Nadezhdina, Ye.D., Orientational relations of graphite–lonsdaleite–diamond at natural transformations in shock waves, Mineral. J. (Ukraine), 1989, vol. 11, no. 1, pp 26–33.Google Scholar
  6. 6.
    Kurdyumov, A.V. and Pilyankevich, A.N., Fazovye prevrashcheniya v uglerode i nitride bora (Phase transformations in carbon and boron nitride), Kiev: Naukova Dumka, 1979.Google Scholar
  7. 7.
    Godinho, J.R., Piazolo, S., and Evans, L.Z., Effect of surface orientation on dissolution rates and topography of CaF2, Geochim. Cosmochim. Ac., 2012, vol.86, pp. 392–403.CrossRefGoogle Scholar
  8. 8.
    Godinho, J., Piazolo, S., and Balic-Zunic, T., Importance of surface structure on dissolution of fluorite: implications for surface dynamics and dissolution rates, Ibid., 2014, vol. 126, pp. 398–410.Google Scholar
  9. 9.
    Kvasnytsya, V. and Wirth, R., Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study, Diam. Relat. Mater., 2013, vol. 32, pp. 7–16.CrossRefGoogle Scholar
  10. 10.
    Wirth, R., Focused ion beam (FIB): A novel technology for advanced application of microand nanoanalysis in geoscience and applied mineralogy, Eur. J. Mineral., 2004, vol. 16, pp. 863–876.CrossRefGoogle Scholar
  11. 11.
    Wirth, R., Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale, Chemical Geology, 2009, vol. 261, pp. 217–229.Google Scholar
  12. 12.
    Trimby, P.W., Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy, 2012, vol. 120, pp. 16–24.CrossRefGoogle Scholar
  13. 13.
    Wyckoff, R.W.G., Crystal Structures, 2nd ed., vol. 1, pp. 7–83, New York: John Wiley and Sons, 1963.Google Scholar
  14. 14.
    Valter, A.A., Oleinik, G.S., Fisenko, A.V., and Semenova, L.F, Structural and morphological evidence of the impact-induced development of diamond after graphite in the Novo-Urei meteorite, Geochemistry Int., 2003, vol. 41, pp. 939–946.Google Scholar
  15. 15.
    Nakamuta, Y. and Toh, S., Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM, Am. Mineral., 2013, vol. 98, pp. 574–581.CrossRefGoogle Scholar
  16. 16.
    Garvie, L.A.J., Németh, P., and Buseck, P.R., Transformation of graphite to diamond via a topotactic mechanism, Ibid., 2014, vol. 99, pp. 531–538.Google Scholar
  17. 17.
    Wheeler, E.J. and Lewis, D., The structure of a shock-quenched diamond, Mater. Research Bulletin, 1975, vol. 10, no. 7, pp. 687–694.CrossRefGoogle Scholar
  18. 18.
    Bundy, F.P. and Kasper, J.S., Hexagonal diamonda new form of carbon, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3437–3446.CrossRefGoogle Scholar
  19. 19.
    Lonsdale, K., Formation of lonsdaleite from single-crystal graphite, Am. Mineral., 1971, vol. 56, pp. 333–336.Google Scholar
  20. 20.
    Sokhor, M.I. and Futergendler, S.I., X-ray crystallographic study of diamond-lonsdaleite crystals, Crystallography, 1974, vol. 19, no. 4, pp. 759–762.Google Scholar
  21. 21.
    Kurdyumov, A.V., Malogolovets, V.G., Novikov, N.V., et al., Polimorfnye modifikatsii ugleroda i nitrida bora (Polymorphic modifications of carbon and boron nitride), Moscow: Metallurgiya, 1994.Google Scholar
  22. 22.
    Oleinik, G.S., Valter, A.A., and Erjomenko, G.K., The structure of high lonsdaleite diamond grains from the impactites of the Belilovka (Zapadnaja) astrobleme (Ukraine), 34th Lunar and Planetary Sci. Conf. LPI, 17–21 March, 2003, Houston, Texas, USA, Abstr. no.1561.Google Scholar
  23. 23.
    Kurdyumov, A.V., Britun, V.F., Yarosh, V.V., et al., The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond, J. Superhard Mater., 2012, vol. 34, no. 1, pp. 19–27.CrossRefGoogle Scholar
  24. 24.
    Masaitis, V.L., Impaktnye almazy Popigaiskoi astroblemy: ikh osnovnye svoistva i promyshlennoe primenenie (Impact diamonds of Popigai astrobleme: their principal features and industrial uses), Proc. Rus. Mineral. Soc., 2013, vol. 142, no. 2, pp. 1–10.Google Scholar
  25. 25.
    Trueb, L.F., An electron-microscope study of shock-synthesized diamond, J. Appl. Phys., 1968, vol. 39, no. 10, pp. 4707–4716.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. Kvasnytsya
    • 1
    Email author
  • R. Wirth
    • 2
  • S. Piazolo
    • 3
  • D. E. Jacob
    • 3
  • P. Trimby
    • 4
  1. 1.Institute of Geochemistry, Mineralogy and Ore FormationNational Academy of Sciences of UkraineKiev 142Ukraine
  2. 2.Helmholtz Centre Potsdam, German Research Centre for GeosciencesGFZ, TelegrafenbergPotsdamGermany
  3. 3.Australian Research Council Centre of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia
  4. 4.Australian Centre for Microscopy and MicroanalysisThe University of SydneySydneyAustralia

Personalised recommendations