Journal of Superhard Materials

, Volume 36, Issue 4, pp 279–287 | Cite as

Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4

  • S. Wang
  • X. Yu
  • J. Zhang
  • Y. Zhang
  • L. Wang
  • K. Leinenweber
  • H. Xu
  • D. Popov
  • C. Park
  • W. Yang
  • D. He
  • Y. Zhao
Production, Structure, Properties

Abstract

Chromium tetraboride (CrB4), a recently proposed candidate for superhard materials, has been synthesized at high pressure and temperature by a solid-state reaction. As a byproduct, chromium diboride (CrB2) also forms and co-exists with CrB4 in the final product. The comparative studies of crystal structure, elastic property, and hardness of both phases have been conducted at the same sample environment conditions. The crystal structure of CrB4 has been refined with an orthorhombic symmetry of Immm(space group no. 71) or Pnnm (space group no. 58) using X-ray diffraction data. Further simulations indicate that the structural distinction between Immm and Pnnm can be resolved by neutron diffraction, due to the high scattering cross-section of boron (11B) by neutrons. Although CrB2 and CrB4 have close bulk modulus at about 230 GPa, the measured asymptotic Vickers hardness yields 16 GPa for CrB2 but 30 GPa for CrB4, which is nearly two times that of CrB2. The dramatic enhancement in hardness in CrB4 is attributed to the strong three-dimensional Cr-B network, in contrast to the layered lattice structure of hexagonal CrB2.

Keywords

chromium borides CrB4 CrB2 high-pressure synthesis structure compressibility superhard material. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanovskii, A.L., The search for novel superhard and incompressible materials on the basis of higher borides of s, p, d metals, J. Superhard Mater., 2011, vol. 33, no. 2, pp. 73–87.CrossRefGoogle Scholar
  2. 2.
    Veprek, S., Zhang, R.F., and Argon, A.S, Mechanical properties and hardness of boron and boron-rich solids, Ibid., 2011, vol. 33, no. 6, pp. 409–420.CrossRefGoogle Scholar
  3. 3.
    Zachary, Z., New superhard ternary borides in composite materials, In New Superhard Ternary Borides in Composite Materials, Metal, Ceramic and Polymeric Composites for Various Uses, Cuppoletti, J., Ed, Int. Tech, 2011, pp. 61–78.Google Scholar
  4. 4.
    Brazhkin, V.V., Lyapin, A.G., and Hemley, R.J., Harder than diamond: Dreams and reality, Phil. Mag. A, 2002, vol. 82, no. 2, pp. 231–253.CrossRefGoogle Scholar
  5. 5.
    Brazhkin, V., Dubrovinskaia, N., Nicol, M., Novikov, N., Riedel, R., Solozhenko, V., and Zhao, Y., From our readers: What does ‘harder than diamond’ mean? Nature Mater., 2004, vol. 3, no. 9, pp. 576–577.CrossRefGoogle Scholar
  6. 6.
    Pierson, H.O., Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Westwood, NY: Noyes Publications, 1996.Google Scholar
  7. 7.
    Chung, H.-Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.CrossRefGoogle Scholar
  8. 8.
    Dubrovinskaia, N., Dubrovinsky, L., and Solozhenko, V.L., Comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Ibid., 2007, vol. 318, no. 5856, p. 1550.CrossRefGoogle Scholar
  9. 9.
    Qin, J., He, D., Wang, J., Fang, L., Lei, L., Li, Y., Hu, J., Kou, Z., and Bi, Y., Is rhenium diboride a superhard material? Adv. Mater., 2008, vol. 20, no. 24, pp. 4780–4783.CrossRefGoogle Scholar
  10. 10.
    Gu, Q., Krauss, G., and Steurer, W., Transition metal borides: superhard versus ultra-incompressible, Ibid., 2008, vol. 20, no. 19, pp. 3620–3626.CrossRefGoogle Scholar
  11. 11.
    Mohammadi, R., Lech, A.T., Xie, M., Weaver, B.E., Yeung, M.T., Tolbert, S.H., and Kaner, R.B., Tungsten tetraboride, an inexpensive superhard material, Proc. Nat. Acad. Sci., 2011, vol. 108, no. 27, pp. 10958–10962.CrossRefGoogle Scholar
  12. 12.
    Mohammadi, R., Xie, M., Lech, A.T., Turner, C.L., Kavner, A., Tolbert, S.H., and Kaner, R.B., Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions, J. Am. Chem. Soc., 2012, vol. 134, no. 51, pp. 20660–20668.CrossRefGoogle Scholar
  13. 13.
    Gou, H., Dubrovinskaia, N., Bykova, E., Tsirlin, A.A., Kasinathan, D., Schnelle, W., Richter, A., Merlini, M., Hanfland, M., Abakumov, A.M., Batuk, D., Van Tendeloo, G., Nakajima, Y., Kolmogorov, A.N., and Dubrovinsky, L., Discovery of a superhard iron tetraboride superconductor, Phys. Rev. Lett., 2013, vol. 111, no. 15, art. 157002.Google Scholar
  14. 14.
    Gou, H., Tsirlin, A.A., Bykova, E., Abakumov, A.M., Van Tendeloo, G., Richter, A., Ovsyannikov, S.V., Kurnosov, A.V., Trots, D.M., Konôpková, Z., Liermann, H.-P., Dubrovinsky, L., and Dubrovinskaia, N., Peierls distortion, magnetism, and high hardness of manganese tetraboride, Phys. Rev. B, 2014, vol. 89, no. 6, art. 064108.Google Scholar
  15. 15.
    Litterscheid, C., Knappschneider, A., and Albert, B., Single crystal structure of MnB4, Z. Anorg. Allg. Chem., 2012, vol. 638, no. 10, pp. 1608–1608.CrossRefGoogle Scholar
  16. 16.
    Knappschneider, A., Litterscheid, C., Dzivenko, D., Kurzman, J.A., Seshadri, R., Wagner, N., Beck, J., Riedel, R., and Albert, B., Possible superhardness of CrB4, Inorg. Chem., 2013, vol. 52, no. 2, pp. 540–542.CrossRefGoogle Scholar
  17. 17.
    Niu, H., Wang, J., Chen, X.-Q., Li, D., Li, Y., Lazar, P., Podloucky, R., and Kolmogorov, A.N., Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B, 2012, vol. 85, no. 14, art. 144116.Google Scholar
  18. 18.
    Knappschneider, A., Litterscheid, C., Kurzman, J., Seshadri, R., and Albert, B., Crystal structure refinement and bonding patterns of CrB4: A boron-rich boride with a framework of tetrahedrally coordinated B atoms, Inorg. Chem., 2011, vol. 50, no. 21, pp. 10540–10542.CrossRefGoogle Scholar
  19. 19.
    Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., Juarez-Arellano, E.A., Milman, V., Refson, K., Kunz, M., and Chen, K., Novel rhenium nitrides, Phys. Rev. Lett., 2010, vol. 105, no. 8, art. 085504.Google Scholar
  20. 20.
    Wang, S., Yu, X., Lin, Z., Zhang, R., He, D., Qin, J., Zhu, J., Han, J., Wang, L., Mao, H.-K., Zhang, J., and Zhao, Y., Synthesis, crystal structure, and elastic properties of novel tungsten nitrides, Chem. Mater., 2012, vol. 24, no. 15, pp. 3023–3028.CrossRefGoogle Scholar
  21. 21.
    Zhao, Z., Cui, L., Wang, L., Xu, B., Liu, Z., Yu, D., He, J., Zhou, X., Wang, H., and Tian, Y., Bulk Re2C: crystal structure, hardness, and ultra-incompressibility, Cryst. Growth Des., 2010, vol. 10, no. 12, pp. 5024–5026.CrossRefGoogle Scholar
  22. 22.
    Wang, M., Li, Y., Cui, T., Ma, Y., and Zou, G., Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4, Appl. Phys. Lett., 2008, vol. 93, no. 10, art. 101905.Google Scholar
  23. 23.
    Zang, C., Sun, H., and Chen, C., Unexpectedly low indentation strength of WB3 and MoB3 from first principles, Phys. Rev. B, 2012, vol. 86, no. 18, art. 180101.Google Scholar
  24. 24.
    Zhang, R.F., Legut, D., Lin, Z.J., Zhao, Y.S., Mao, H.K., and Veprek, S., Stability and strength of transition-metal tetraborides and triborides, Phys. Rev. Lett., 2012, vol. 108, no. 25, art. 255502.Google Scholar
  25. 25.
    Qin, J., Nishiyama, N., Ohfuji, H., Shinmei, T., Lei, L., He, D., and Irifune, T., Polycrystalline Γ-boron: As hard as polycrystalline cubic boron nitride, Scr. Mater., 2012, vol. 67, no. 3, pp. 257–260.CrossRefGoogle Scholar
  26. 26.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic model of hardness: Particular case of boron-rich solids, J. Superhard Mater., 2010, vol. 32, no. 3, pp. 167–176.CrossRefGoogle Scholar
  27. 27.
    Andersso, S. and Lundstro, T., Crystal structure of CrB4, Acta Chem. Scand., 1968, vol. 22, no. 10, pp. 3103–3110.CrossRefGoogle Scholar
  28. 28.
    Yang, M., Wang, Y., Yao, J., Li, Z., Zhang, J., Wu, L., Li, H., Zhang, J., and Gou, H., Structural distortion and band gap opening of hard MnB4 in comparison with CrB4 and FeB4, J. Solid State Chem., 2014, vol. 213, pp. 52–56.CrossRefGoogle Scholar
  29. 29.
    Wang, W., He, D., Wang, H., Wang, F., Dong, H., Chen, H., Li, Z., Zhang, J., Wang, S., Kou, Z., and Peng, F., Research on pressure generation efficiency of 6–8 type multianvil high pressure apparatus, Acta Phys. Sin, 2010, 59, no 5, pp. 3107–3115.Google Scholar
  30. 30.
    Toby, B.H., EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst., 2001, vol. 34, pp. 210–213.CrossRefGoogle Scholar
  31. 31.
    Mao, H.K., Xu, J., and Bell, P.M., Calibration of the tuby pressure gauge to 800 kbar under quasi-hydrostatic conditions, J. Geophys. Res.: Solid Earth, 1986, vol. 91, no. B5, pp. 4673–4676.CrossRefGoogle Scholar
  32. 32.
    Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D., Two-dimensional detector software: from real detector to idealized image or two-theta scan, High Press. Res., 1996, vol. 14, nos. 4–6, pp. 235–248.CrossRefGoogle Scholar
  33. 33.
    Birch, F., Finite elastic strain of cubic crystals, Phys. Rev., 1947, vol. 71, no. 11, pp. 809–824.CrossRefGoogle Scholar
  34. 34.
    Okamoto, N.L., Kusakari, M., Tanaka, K., Inui, H., and Otani, S., Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2, Acta Mater., 2010, vol. 58, no. 1, pp. 76–84.CrossRefGoogle Scholar
  35. 35.
    Kurakevych, O.O. and Solozhenko, V.L., 300-K equation of state of rhombohedral boron subnitride, Solid State Commun., 2009, vol. 149, nos. 47–48, pp. 2169–2171.CrossRefGoogle Scholar
  36. 36.
    Nieto-Sanz, D., Loubeyre, P., Crichton, W., and Mezouar, M., X-ray study of the synthesis of boron oxides at high pressure: Phase diagram and equation of state, Phys. Rev. B, 2004, vol. 70, no. 21, art. 214108.Google Scholar
  37. 37.
    Nelmes, R.J., Loveday, J.S., Wilson, R.M., Marshall, W.G., Besson, J.M., Klotz, S., Hamel, G., Aselage, T.L., and Hull, S., Observation of inverted-molecular compression in boron carbide, Phys. Rev. Lett., 1995, vol. 74, no. 12, pp. 2268–2271.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • S. Wang
    • 1
    • 2
    • 3
  • X. Yu
    • 2
  • J. Zhang
    • 2
  • Y. Zhang
    • 1
  • L. Wang
    • 1
  • K. Leinenweber
    • 4
  • H. Xu
    • 2
  • D. Popov
    • 5
  • C. Park
    • 5
  • W. Yang
    • 5
    • 6
  • D. He
    • 3
  • Y. Zhao
    • 1
    • 2
  1. 1.HiPSEC & Physics DepartmentUniversity of NevadaLas VegasUSA
  2. 2.LANSCE & EES DivisionsLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Institute of Atomic & Molecular, PhysicsSichuan UniversityChengduP. R. China
  4. 4.Deptartment of Chemistry and BiochemistryArizona State UniversityTempeUSA
  5. 5.HPCAT & HPSynC, Geophysical LaboratoryCarnegie Institution of WashingtonArgonneUSA
  6. 6.Center for High Pressure Science and Technology Advanced Research (HPSTAR)ShanghaiP. R. China

Personalised recommendations