Skip to main content
Log in

A novel layer-structured PtN2: First-principles calculations

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The potential structures of platinum nitride with a chemical composition of PtN2 have been examined by utilizing a widely adopted evolutionary methodology for crystal structure prediction. Except reproducing the previously proposed phases, a Pmmm symmetric novel layer structure with a low formation enthalpy that is slightly lower than those of marcasite and CoSb2 structures but slightly higher than that of pyrite structure has also been identified. The elastic constants and the lattice dynamical calculations show that this layer-structured PtN2 is mechanically and dynamically stable. The calculated band structures suggest this new phase together with the simple tetragonal phase are metallic, while other phases are insulators. In addition, it has been found by the phonon spectrum calculations that the fluorite structure is dynamically unstable, although it is mechanically stable as suggested by calculated elastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H.K., and Hemley, R.J., Synthesis and Characterization of a Binary Noble Metal Nitride, Nature Mater., 2004, vol. 3, pp. 294–297.

    Article  CAS  Google Scholar 

  2. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Evans, C.L., Morrall, P.G., Ferreira, J.L., and Nelson, A.J., Synthesis and Characterization of the Nitrides of Platinum and Iridium, Science, 2006, vol. 311, no. 5765, pp. 1275–1278.

    Article  CAS  Google Scholar 

  3. Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H.K., Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2, Phys. Rev. Lett., 2006, vol. 96, art. 155501.

  4. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Zaug, J.M., Aberg, D., Meng, Y., and Prakapenka, V.B., Synthesis and Characterization of Nitrides of Iridium and Palladium, Mater. Res. Soc., 2007, vol. 987, pp. 03–09.

    CAS  Google Scholar 

  5. Moreno-Armenta, M.G., Diaz, J., Martinez-Ruiz, A., and Soto, G. Synthesis of Cubic Ruthenium Nitride by Reactive Pulsed Laser Ablation, J. Phys. Chem. Solids, 2007, vol. 68, no. 10, pp. 1989–1994.

    Article  CAS  Google Scholar 

  6. Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., Juarez-Arellano, E.A., Milman, V., Refson, K., Kunz, M., and Chen, K., Novel Rhenium Nitrides, Phys. Rev. Lett., 2010, vol. 105, art. 085504.

  7. Kawamura, F., Yusa, H., and Taniguchi, T., Synthesis of Rhenium Nitride Crystals with MoS2 Structure, Appl. Phys. Lett., 2012, vol. 100, art. 251910.

  8. Sahu, B.R. and Kleinman, L., PtN: a Zinc-Blende Metallic Transition-Metal Compound, Phys. Rev. B, 2005, vol. 71, art. 041101.

  9. Uddin, J. and Scuseria, G.E., Structures and Electronic Properties of Platinum Nitride by Density Functional Theory, ibid., 2005, vol. 72, art. 035101.

  10. Yu, R. and Zhang, X.F., Platinum Nitride with Fluorite Structure, Appl. Phys. Lett., 2005, vol. 86, art. 121913.

  11. Young, A.F., Montoya, J.A., Sanloup, C., Lazzeri, M., Gregoryanz, E., and Scandolo, S., Interstitial Dinitrogen Makes PtN2 an Insulating Hard Solid, Phys. Rev. B, 2006, vol. 73, art. 153102.

  12. Wessel, M. and Dronskowski, R., Nature of NN Bonding within High-Pressure Noble-Metal Pernitrides and the Prediction of Lanthanum Pernitride, J. Am. Chem. Soc., 2012, vol. 132, pp. 2421–2429.

    Article  Google Scholar 

  13. Aberg, D., Sadigh, B., Crowhurst, J., and Goncharov, A.F., Thermodynamic Ground States of Platinum Metal Nitrides, Phys. Rev. Lett., 2008, vol. 100, art. 095501.

  14. Yildiz, A., Akinci, U., Gülseren O., Sökmen I., Characterization of Platinum Nitride from First-Principles Calculations, J. Phys.: Condens. Matter., 2009, vol. 21, art. 485403.

  15. Chen, Z.W., Guo, X.J., Liu, Z.Y., Ma, M.Z., Jing, Q., Li, G., Zhang, X.Y., Li, L.X., Wang, Q., Tian, Y.J., and Liu, R.P., Crystal Structure and Physical Properties of OsN2 and PtN2 in the Marcasite Phase, Phys. Rev. B, 2007, vol. 75, art. 054103.

  16. Zhu, Y., Fan, C.Z., Zhang, X.Y., Zhang, S.H., Li, L. X., Zhang, S.L., Jin, H.Y., Liu, R.P., Theoretical Study of the Properties of PtN2 with Pyrite and Marcasite Structures, Solid State Commun., 2009, vol. 149, no. 25–26, pp. 1021–1024.

    Article  CAS  Google Scholar 

  17. Montoya, J.A., Hernández, A.D., Sanloup, C., Gregoryanz, E., and Scandolo, S., OsN2 Crystal Structure and Electronic Properties, Appl. Phys. Lett., 2007, vol. 90, art. 011909.

  18. Wang, Y.X., Arai, M., and Sasaki, T., Marcasite Osmium Nitride with High Bulk Modulus: First-Principles, ibid., 2007, vol. 90, art. 061922.

  19. Hernández, E.R. and Canadell, E., Marcasite vs. Arsenopyrite Structural Choice in MN2 (M = Ir, Os, and Rh) Transition Metal Nitrides, J. Mater. Chem., 2008, vol. 18, pp. 2090–2095.

    Article  Google Scholar 

  20. Oganov, A.R. and Glass, C.W., Crystal Structure Prediction Using ab initio Evolutionary Techniques: Principles and Applications, J. Chem. Phys., 2006, vol. 124, art. 2444704.

  21. Glass, C.W., Oganov, A.R., and Hansen, N., USPEX-Evolutionary Crystal Structure Prediction, Computer Physics Commun., 2006, vol. 175, no. 11–12, pp. 713–720.

    Article  CAS  Google Scholar 

  22. Zhu, Q., Oganov, A.R., Glass, C.W., and Stokes, H.T., Constrained Evolutionary Algorithm for Structure Prediction of Molecular Crystals: Methodology and Applications, Acta Crystallogr., Sect. B: Struct. Sci., 2012, vol. 68, pp. 215–226.

    Article  Google Scholar 

  23. Kresse, G. and Furthmüller, J., Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  24. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  Google Scholar 

  25. Blöchl, P. E., Projector Augmented-Wave Method, Phys. Rev. B, 1994, vol. 50, pp. 17953–17979.

    Article  Google Scholar 

  26. Kresse, G. and Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, ibid., 1999, vol. 59, pp. 1758–1775.

    Article  CAS  Google Scholar 

  27. Segall, M.D., Linda, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., First-Principles Simulation: Ideas, Illustrations, and the CASTEP Code, J. Phys.: Condens. Matter., 2002, vol. 14, no. 11, pp. 2717–2744.

    CAS  Google Scholar 

  28. Ceperley, D.M. and Alder, B.J., Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, vol. 45, pp. 566–569.

    Article  CAS  Google Scholar 

  29. Monkhorst, H.J. and Pack, J.D., Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, vol. 13, pp. 5188–5192.

    Article  Google Scholar 

  30. Chen, W. and Jiang, J.Z., Elastic Properties and Electronic Structures of 4d- and 5d-Transition Metal Mononitrides, J. Alloys Compd., 2010, vol. 499, no. 2, pp. 243–254.

    Article  CAS  Google Scholar 

  31. Chen, W., Tse, J.S., and Jiang, J.Z., An ab initio study of 5d noble metal nitrides: OsN2, IrN2, PtN2, and AuN2, Solid State Commun., 2010, vol. 150, nos. 3–4, pp. 181–186.

    Article  CAS  Google Scholar 

  32. Yu, R., Zhan, Q., and Zhang, X.F., Elastic Stability and Electronic Structure of Pyrite Type PtN2: A Hard Semiconductor, Appl. Phys. Lett., 2006, vol. 88, art. 051913.

  33. Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J., Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles, Phys. Rev. B, 2007, vol. 76, art. 054115.

  34. Li, Y.W., Wang, H., Li, Q., Ma, Y.M., Cui, T., and Zou, G.T., Twofold Coordinated Ground-State and Eightfold High-Pressure Phase of Heavy Transition Metal Nitrides MN2 (M = Os, Ir, Ru, and Rh), Inorg. Chem., 2009, vol. 48, pp. 9904–9909.

    Article  CAS  Google Scholar 

  35. Wu, Z.J., Hao, X.F., Liu, X.J., and Meng, J., Structures and Elastic Properties of OsN2 Investigated via First-Principles Density Functional Calculations, Phys. Rev. B, 2007, vol. 75, art. 054115.

  36. Gou, H.Y., Hou, L., Zhang, J.W., Sun, G.F., Gao, L.H., and Gao, F.M., First-Principles Study of Low Compressibility Osmium Borides, Appl. Phys. Lett., 2006, vol. 88, art. 221910.

  37. Suleiman, M.S.H. and Joubert, D.P., Structural, Electronic, and Optical Characterization of Bulk Platinum Nitrides: a First-Principles Study, arXiv: 1301.5490 v1 [cond-mat.mtrl-sci].

  38. Liu, Q.X., Fan, C.Z., and Zhang, R.J., First-Principles Study of High-Pressure Structural Phase Transitions of Magnesium, J. Appl. Phys., 2009, vol. 105, art. 123505.

  39. Nye, J.F., The Stress Tensor, in Physical Properties of Crystals, Oxford: Oxford University Press, 1985, pp. 82–93.

    Google Scholar 

  40. Togo, A., Oba, F., and Tanaka, I., First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl2-Type SiO2 at High Pressures, Phys. Rev. B, 2008, vol. 78, art. 134106.

  41. Soto, G., Computational Study of Hf, Ta, W, Re, Ir, Os and Pt Pernitrides, Comp. Mater. Sci., 2012, vol. 61, pp. 1–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original English Text © C.Z. Fan, J.Li, M. Hu, Z.S. Zhao, B. Xu, J.L. He, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 6, pp. 14–27.

About this article

Cite this article

Fan, C.Z., Li, J., Hu, M. et al. A novel layer-structured PtN2: First-principles calculations. J. Superhard Mater. 35, 339–349 (2013). https://doi.org/10.3103/S1063457613060026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613060026

Keywords

Navigation