Skip to main content
Log in

Mechanical properties of HfB2 whiskers

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Nanoindentation has been used to study mechanical behavior of HfB2 whiskers 10–20μm in diameter in a directionally reinforced ceramics. For comparison a bulk (0001) HfB2 single crystal 5 mm in diameter has been tested. For both the samples a pop-in due to the nucleation of dislocations in a previously dislocation-free region under the indent has been observed. It has been shown that for a HfB2 whisker in reinforced ceramics the critical load of the elastoplastic transition is twice as high as for a bulk HfB2 single crystal and, the maximum shear stress, at which the nucleation of the first dislocation loop in a HfB2 whisker occurs, approaches to the theoretical shear strength value. The observed effect has been caused by the higher structural perfection of whiskers as compared with a bulk sample. Hardness and elastic modulus of the HfB2 whisker are higher than that of the bulk crystal by 10 and 3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dehm, G., Miniaturized Single-Crystalline fcc Metals Deformed in Tension: New Insights in Size-Dependent Plasticity, Progress Mater. Sci., 2009, vol. 54, pp. 664–688.

    Article  CAS  Google Scholar 

  2. Nadgorny, E.M., Dimiduk, D.M., and Uchic, M.D., Size Effects in LiF Micron-Scale Single Crystals of Low Dislocation Density, J. Mater. Res., 2008, vol. 23, pp. 2829–2835.

    Article  CAS  Google Scholar 

  3. Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., and Pharr, G.M., Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique, Scripta Mater., 2007, vol. 57, pp. 397–400.

    Article  CAS  Google Scholar 

  4. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  5. Michalske, T.A. and Houston, J.E., Dislocation Nucleation at Nano-Scale Mechanical Contacts, Acta Mater., 1998, vol. 46, pp. 391–396.

    Article  CAS  Google Scholar 

  6. Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Non-Linear Deformation Mechanisms during Nanoindentation, ibid., 1998, vol. 46, pp. 3605–3617.

    Article  CAS  Google Scholar 

  7. Shim, S., Bei, E.P., George, E.P., and Pharr, G. M., A Different Type of Indentation Size Effect, Scripta Mater., 2008, vol. 59, pp. 1095–1098.

    Article  CAS  Google Scholar 

  8. Dub, S.N., Lim, Y.Y., and Chaudhri, M.M., Nanohardness of High Purity Cu (111) Single Crystals: The Effect of Indenter Load and Prior Plastic Sample Strain, J. Appl. Phys., 2010, vol. 107, art. 043510.

  9. Lu, C., Mai, Y.-W., Tam, P.L., and Shen, Y.G., Nanoindentation-Induced Elastic-Plastic Transition and Size Effect in α-Al2O3 (0001), Phil. Mag. Lett., 2007, vol. 87, no. 6, pp. 409–415.

    Article  CAS  Google Scholar 

  10. Tymiak, N.I. and Gerberich, W.W., Initial Stages of Contact-Induced Plasticity in Sapphire. II. Mechanisms of Plasticity Initiation, Phil. Mag., 2007, vol. 87, pp. 5169–5188.

    Article  CAS  Google Scholar 

  11. Tymiak, N., Chrobak, D., Gerberich, W., Warren O., and Nowak, R., Role of Competition between Slip and Twinning in Nanoscale Deformation of Sapphire, Phys. Rev. B, 2009, vol. 79, art. 174116.

  12. Tromas, C., Gaillard, Y., and Woirgard, J., Nucleation of Dislocations during Nanoindentation in MgO, Phil. Mag., 2006, vol. 86, pp. 5595–5606.

    Article  CAS  Google Scholar 

  13. Montagne, A., Tromas, C., Audurier, V., and Woirgard, J., A New Insight on Reversible Deformation and Incipient Plasticity during Nanoindentation Test in MgO, J. Mater. Res., 2009, vol. 24, pp. 883–889.

    Article  CAS  Google Scholar 

  14. Guicciardi, S., Melandri, C., and Monteverde, F.T., Characterization of Pop-in Phenomena and Indentation Modu-lus in a Polycrystalline ZrB2 Ceramic, J. Europ. Ceram. Soc., 2010, vol. 30, pp. 1027–1034.

    Article  CAS  Google Scholar 

  15. Loboda, P., Features of Structure Formation with Zone Melting of Powder Boron-Containing Refractory Materials, Powder Metallurgy Metal Ceramics, 2000, vol. 39, pp. 480–486.

    Article  CAS  Google Scholar 

  16. Loboda, P, Bogomol, I., Sysoev, M., Kysla, G., Structure and Properties of Superhard Materials Based on Pseudo-Binary Systems of Borides Produced by Zone Melting, J. Superhard Mater., 2006, vol. 28, no. 5, pp. 28–32.

    Google Scholar 

  17. Kysla, G.P., Sysoev, M.O., Kalezhnyuk, I.V., and Loboda, P.I., Formation of Eutectic Structure of Alloys of the LaB 6 -ScB 2 System, Abstracts of the II Inter. Conf. on CMMT-2011, Nov. 16–18, 2011, Kiev: IMF, p. 133.

    Google Scholar 

  18. Hay, J., Agee, P., and Herbert, E., Continuous Stiffness Measurement during Instrumented Indentation Testing, Experimental Techniques, 2010, no. 3, pp. 86–94.

    Google Scholar 

  19. Loboda, P.I., Bogomol, Yu.I., and Nesterenko, Yu.V., Strengthening of Directionally Reinforced Composites under the High-Temperature Conditions, Metaloznavstvo ta Obrobka Metaliv, 2010, no. 1, pp. 17–23.

    Google Scholar 

  20. Bogomol, Yu., Nishimura, T., Nesterenko, Yu., Vasylkiv, O., Sakka, Y., and Loboda, P., The Bending Strength Temperature Dependence of the Directionally Solidified Eutectic LaB6-ZrB2 Composite, J. Alloys Compounds, 2011, vol. 509, pp. 6123–6129.

    Article  CAS  Google Scholar 

  21. Practical Scanning Electron Microscopy, Textbook, Goldstein, J. and Yakowitz, H., Eds., Plenum Press, 1975.

    Google Scholar 

  22. Fodchuk, I., Balovsyak, S., Borcha, M., et al., Determination of Structural Inhomogeneity of Synthesized Diamonds by Back Scattering Electron Diffraction, Phys. Stat. Sol. A, 2011, vol. 208, no. 11, pp. 2591–2596.

    Article  CAS  Google Scholar 

  23. Loboda, P.I., Kysla, G.P., Dub, S.M., and Karasevs’ka, O.P., Mechanical Properties of Hexaboride Lanthanum Single Crystals, Physicochemical Mechanics of Materials, 2009, no. 1, pp. 97–101.

    Google Scholar 

  24. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 2007, vol. 90, pp. 1347–1364.

    Article  CAS  Google Scholar 

  25. Dub, S.N., Brazhkin, V.V., Novikov, N.V., Tolmachova, G.N., Litvin, P.M., Lityagina, L.M., and Dyuzheva, T.I., Comparative Studies of Mechanical Properties of Stishovite and Sapphire Single Crystals by Nanoindentation, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 406–414.

    Article  Google Scholar 

  26. Johnson, K., Contact Mechanics, Cambridge: Cambridge University Press, 1985.

    Book  Google Scholar 

  27. Zhang, X.H., Luo, X.G., Li, J.P., Hu, P., and Han, J.C., The Ideal Strength of Transition Metal Diborides TMB2 (TM = Ti, Zr, Hf): Plastic anisotropy and the Role of Prismatic Slip, Scripta Mater., 2010, vol. 62, pp. 625–628.

    Article  CAS  Google Scholar 

  28. Dub, S.N., Zasimchuk, I.K., and Matvienko, L.F., The Effect of the Solid-Solution Strengthening with Iridium on the Nucleation of Dislocations in a Molybdenum Single Crystal in Nanoindentation, Physics of the Solid State, 2011, vol. 53, pp. 1332–1339.

    Article  Google Scholar 

  29. Ohmura, T., Zhang, L., Sekido, K., and Tsuzaki, K., Effects of Lattice Defects on Indentation-Induced Plasticity Initiation Behavior in Metals, J. Mater. Res., 2012, vol. 27, pp. 1742–1749.

    Article  CAS  Google Scholar 

  30. Dub, S.N., Goncharov, A.A., Ponomarev, S.S., Fillipov, V.B., Tolmacheva, G.N., and Akulov, A.V., Mechanical Properties of HfB2,7 Nanocrystalline Thin Films, J. Superhard Mater., 2011, vol. 33, no. 3, pp. 9–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.N. Dub, P.I. Loboda, Yu.I. Bogomol, G.N. Tolmacheva, V.N. Tkach, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 4, pp. 51–62.

About this article

Cite this article

Dub, S.N., Loboda, P.I., Bogomol, Y.I. et al. Mechanical properties of HfB2 whiskers. J. Superhard Mater. 35, 234–241 (2013). https://doi.org/10.3103/S1063457613040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613040059

Keywords

Navigation