Advertisement

Journal of Superhard Materials

, Volume 34, Issue 2, pp 81–94 | Cite as

Macro- and nanoscopic capillary effects on nanostructured real surfaces

  • A. A. Efremov
  • P. M. Lytvyn
  • A. G. Gontar’
  • S. P. Starik
  • V. M. Perevertailo
  • I. V. Prokopenko
  • O. M. Kutsay
  • O. B. Loginova
Production, Structure, Properties
  • 41 Downloads

Abstract

The measurements of capillary forces on different diamond-like materials and carbon allotropic modifications taken using a scanning force microscope have been discussed. The amplitude-frequency characteristics of the nanorelief surfaces studied have been widely varied by plasma chemical treatments. The measurements of capillary forces have been compared with the macroscopic values of a wetting angle. It has been shown that a macroscopic wetting angle depends on the averaged surface energy only and is slightly dependent on the nanorelief characteristics, and nanocapillary forces correlate with both surface relief parameters and the local angle of wetting. Criteria for multimeniscus mode of capillary forces measurement in the surface force spectroscopy and the prospects of this procedure application for mapping the real surface energy have been considered in detail.

Keywords

atomic force spectroscopy nanocapillary forces macroscopic contact angle nanorelief energy mapping of the real surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butt, H.J. and Kappl, M., Normal Capillary Forces, Advances in Colloid and Interface Science, 2009, vol. 146, nos. 1–2, pp. 48–60.CrossRefGoogle Scholar
  2. 2.
    Efremov, A.A., Lytvyn, P.M., Anishchenko, A.O., et al., Nanoprobe Spectroscopy of Capillary Forces and Its Application for a Real Surface Diagnostics, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010, vol. 13, no. 2, pp. 111–124.Google Scholar
  3. 3.
    Israelachvili, J., Intermolecular and Surface Forces, CA San Diego: Academic Press, 1998.Google Scholar
  4. 4.
    Lytvyn, P.M., Olikh, O.Ya., Lytvyn, O.S., et al., Ultrasonic Assisted Nanomanipulations with Atomic Force Microscope, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010, vol. 13, no. 1, pp. 36–42.Google Scholar
  5. 5.
    Wenzel, R.N., Resistance of Solid Surface to Wetting by Water, Ind. Eng. Chem., 1936, vol. 28, no. 8, pp. 988–991.CrossRefGoogle Scholar
  6. 6.
    Deryagin, B.V., On the Contact Angle Dependence on the Microrelief and Roughness of the Wetted Surface, DAN SSSR, 1946, vol. 51, no. 5, pp. 357–360.Google Scholar
  7. 7.
    Cassie, A.B.D. and Baxter, S., Wettability of Porous Surfaces, Transactions Faraday Society, 1944, vol. 40, pp. 546–551.CrossRefGoogle Scholar
  8. 8.
    Summ, B.D. and Goryunov, Yu.B., Fiziko-khimicheskie osnovy smachivaniya i pastekaniya (Physicochemical Principles of Wetting and Spreading), Moscow: Khimiya, 1976.Google Scholar
  9. 9.
    Doroshenko, A.A., Kutsay, A.M., Semenovich, V.A., et al., Optical Absorption Edge of Amorphous Carbon Films Deposited from a Hydrocarbon High-Frequency Discharge Plasma, J. Superhard Mater., 1995, vol. 17, no. 1, pp. 1–5.Google Scholar
  10. 10.
    Gontar, A.G., Doroshenko, A.A., Kutsay, A.M., and Khandozhko, S.I., Synthesis and Optical Properties of (a-C:H) Diamond-Like Films for Anti-Reflection Coatings, J. Chemical Vapor Deposition, 1995, vol. 4, no. 1, pp. 15–21.Google Scholar
  11. 11.
    Gontar, A.G., Kutsay, O.M., Khandozhko, S.I., et al., Nanostructural Peculiarities of the Surface Morphology of a-C:H Films Deposited from Hydrocarbon Plasma, J. Superhard Mater., 2000, vol. 22, no. 6, pp. 30–34.Google Scholar
  12. 12.
    Novikov, N.V., Gontar, A.G., Khandozhko, S.I., et al., Protective Diamond-Like Coatings for Optical Materials and Electronic Devices, Diamond Relat. Mater., 2000, vol. 9, nos. 3–6, pp. 792–795.CrossRefGoogle Scholar
  13. 13.
    Kutsay, O.M., Gontar, A.G., Novikov, N.V., et al., Diamond-Like Carbon Films in Multilayered Interference Coatings for IR Optical Elements, ibid., 2001, vol. 10, nos. 9–10, pp. 1846–1849.CrossRefGoogle Scholar
  14. 14.
    Kutsay, O., Loginova, O., Gontar, A., et al., Surface Properties of Amorphous Carbon Films, ibid., 2008, vol. 17, nos. 7–10, pp. 1689–1691.CrossRefGoogle Scholar
  15. 15.
    Diao, J., Ren, D., Engstrom, J.R., and Lee, K.H., A Surface Modification Strategy on Silicon Nitride for Developing Biosensors, Analytical Biochemistry, 2005, vol. 343, pp. 322–328.CrossRefGoogle Scholar
  16. 16.
    Dongmo, L.S., Villarrubia, J.S., Jones, S.N., et al., Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy, Ultramicroscopy, 2000, vol. 85, pp. 141–153.CrossRefGoogle Scholar
  17. 17.
    Hutter, J.L. and Bechhoefer, J., Calibration of Atomic-Force Microscope Tips, Rev. Sci. Instrum., 1993, vol. 64, no. 7, pp. 1868–1873.CrossRefGoogle Scholar
  18. 18.
    Rabinovich, Ya.I., Adler, J.J., Esayanur, M.S., et al., Capillary Forces between Surfaces with Nanoscale Roughness, Advances in Colloid and Interface Science, 2002, vol. 96, nos. 1–3, pp. 213–230.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • A. A. Efremov
    • 1
  • P. M. Lytvyn
    • 1
  • A. G. Gontar’
    • 2
  • S. P. Starik
    • 2
  • V. M. Perevertailo
    • 2
  • I. V. Prokopenko
    • 1
  • O. M. Kutsay
    • 2
  • O. B. Loginova
    • 2
  1. 1.Lashkarev Institute of Physics of SemiconductorsNational Academy of SciencesKievUkraine
  2. 2.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations