Skip to main content
Log in

Macro- and nanoscopic capillary effects on nanostructured real surfaces

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The measurements of capillary forces on different diamond-like materials and carbon allotropic modifications taken using a scanning force microscope have been discussed. The amplitude-frequency characteristics of the nanorelief surfaces studied have been widely varied by plasma chemical treatments. The measurements of capillary forces have been compared with the macroscopic values of a wetting angle. It has been shown that a macroscopic wetting angle depends on the averaged surface energy only and is slightly dependent on the nanorelief characteristics, and nanocapillary forces correlate with both surface relief parameters and the local angle of wetting. Criteria for multimeniscus mode of capillary forces measurement in the surface force spectroscopy and the prospects of this procedure application for mapping the real surface energy have been considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butt, H.J. and Kappl, M., Normal Capillary Forces, Advances in Colloid and Interface Science, 2009, vol. 146, nos. 1–2, pp. 48–60.

    Article  CAS  Google Scholar 

  2. Efremov, A.A., Lytvyn, P.M., Anishchenko, A.O., et al., Nanoprobe Spectroscopy of Capillary Forces and Its Application for a Real Surface Diagnostics, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010, vol. 13, no. 2, pp. 111–124.

    CAS  Google Scholar 

  3. Israelachvili, J., Intermolecular and Surface Forces, CA San Diego: Academic Press, 1998.

    Google Scholar 

  4. Lytvyn, P.M., Olikh, O.Ya., Lytvyn, O.S., et al., Ultrasonic Assisted Nanomanipulations with Atomic Force Microscope, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010, vol. 13, no. 1, pp. 36–42.

    CAS  Google Scholar 

  5. Wenzel, R.N., Resistance of Solid Surface to Wetting by Water, Ind. Eng. Chem., 1936, vol. 28, no. 8, pp. 988–991.

    Article  CAS  Google Scholar 

  6. Deryagin, B.V., On the Contact Angle Dependence on the Microrelief and Roughness of the Wetted Surface, DAN SSSR, 1946, vol. 51, no. 5, pp. 357–360.

    Google Scholar 

  7. Cassie, A.B.D. and Baxter, S., Wettability of Porous Surfaces, Transactions Faraday Society, 1944, vol. 40, pp. 546–551.

    Article  CAS  Google Scholar 

  8. Summ, B.D. and Goryunov, Yu.B., Fiziko-khimicheskie osnovy smachivaniya i pastekaniya (Physicochemical Principles of Wetting and Spreading), Moscow: Khimiya, 1976.

    Google Scholar 

  9. Doroshenko, A.A., Kutsay, A.M., Semenovich, V.A., et al., Optical Absorption Edge of Amorphous Carbon Films Deposited from a Hydrocarbon High-Frequency Discharge Plasma, J. Superhard Mater., 1995, vol. 17, no. 1, pp. 1–5.

    Google Scholar 

  10. Gontar, A.G., Doroshenko, A.A., Kutsay, A.M., and Khandozhko, S.I., Synthesis and Optical Properties of (a-C:H) Diamond-Like Films for Anti-Reflection Coatings, J. Chemical Vapor Deposition, 1995, vol. 4, no. 1, pp. 15–21.

    CAS  Google Scholar 

  11. Gontar, A.G., Kutsay, O.M., Khandozhko, S.I., et al., Nanostructural Peculiarities of the Surface Morphology of a-C:H Films Deposited from Hydrocarbon Plasma, J. Superhard Mater., 2000, vol. 22, no. 6, pp. 30–34.

    Google Scholar 

  12. Novikov, N.V., Gontar, A.G., Khandozhko, S.I., et al., Protective Diamond-Like Coatings for Optical Materials and Electronic Devices, Diamond Relat. Mater., 2000, vol. 9, nos. 3–6, pp. 792–795.

    Article  CAS  Google Scholar 

  13. Kutsay, O.M., Gontar, A.G., Novikov, N.V., et al., Diamond-Like Carbon Films in Multilayered Interference Coatings for IR Optical Elements, ibid., 2001, vol. 10, nos. 9–10, pp. 1846–1849.

    Article  CAS  Google Scholar 

  14. Kutsay, O., Loginova, O., Gontar, A., et al., Surface Properties of Amorphous Carbon Films, ibid., 2008, vol. 17, nos. 7–10, pp. 1689–1691.

    Article  CAS  Google Scholar 

  15. Diao, J., Ren, D., Engstrom, J.R., and Lee, K.H., A Surface Modification Strategy on Silicon Nitride for Developing Biosensors, Analytical Biochemistry, 2005, vol. 343, pp. 322–328.

    Article  CAS  Google Scholar 

  16. Dongmo, L.S., Villarrubia, J.S., Jones, S.N., et al., Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy, Ultramicroscopy, 2000, vol. 85, pp. 141–153.

    Article  CAS  Google Scholar 

  17. Hutter, J.L. and Bechhoefer, J., Calibration of Atomic-Force Microscope Tips, Rev. Sci. Instrum., 1993, vol. 64, no. 7, pp. 1868–1873.

    Article  CAS  Google Scholar 

  18. Rabinovich, Ya.I., Adler, J.J., Esayanur, M.S., et al., Capillary Forces between Surfaces with Nanoscale Roughness, Advances in Colloid and Interface Science, 2002, vol. 96, nos. 1–3, pp. 213–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Efremov, P.M. Lytvyn, A.G. Gontar’, S.P. Starik, V.M. Perevertailo, I.V. Prokopenko, O.M. Kutsay, O.B. Loginova, 2012, published in Sverkhtverdye Materialy, 2012, Vol. 34, No. 2, pp. 10–28.

About this article

Cite this article

Efremov, A.A., Lytvyn, P.M., Gontar’, A.G. et al. Macro- and nanoscopic capillary effects on nanostructured real surfaces. J. Superhard Mater. 34, 81–94 (2012). https://doi.org/10.3103/S1063457612020025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457612020025

Keywords

Navigation