The study of the kinetics of water spreading on solid phases of carbon allotropic materials

  • V. M. Perevertailo
  • O. G. Gontar
  • S. P. Starik
  • O. B. Loginova
  • O. M. Kutsay
Production, Structure, Properties


Kinetics of water spreading on the surface of solid phases of various carbon materials has been first studied with the use of high-speed video filming (up to 1200 frames per second). It has been found that rates of low-temperature liquid and metal melts spreading and wetting the surface of solid phases are close in time (the process length is 10−2–10−3s) and in both the cases the spreading occurs in an inert mode. It has been shown that at the final stages the spreading of low-temperature liquids occurs at a viscous mode (10–30 min) caused by the presence of an adsorbed layer (coat) on the solid phase surface due to the environment.


the kinetics of spreading wetting carbon materials water plasmachemical treatment 


  1. 1.
    Naidich, Yu.V., Perevertailo, V.M., and G. M. Nevodnik, G.M., Study of the Kinetics of Spreading Metal Melts over Solid Surfaces, Powder Metallurgy and Metal Ceramics, 1972, vol. 12, no. 7, pp. 57–61.Google Scholar
  2. 2.
    Perevertailo, V.M. and Loginova, O.G., Kinetics of Spreading and Kinetics of Wetting Graphite by Liquid Palladium and Platinum, Adhesiya Rasplavov i Paika Materialov, 1985, issue 14, pp. 53–55.Google Scholar
  3. 3.
    Popel, S.I., Kinetics of Spreading Melts on Solid Surfaces and Kinetics of Wetting, ibid., 1976, issue 1, pp. 3–28.Google Scholar
  4. 4.
    Naidich, Yu.V., Zabuga, V.V., and Perevertailo, V.M., Temperature Dependence of the Spreading Kinetics in Systems with Different Types of the Interaction between Contacting Phases, ibid., 1992, issue. 27, pp. 23–34.Google Scholar
  5. 5.
    Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Principles of Wetting and Spreading), Moscow: Khimiya, 1976.Google Scholar
  6. 6.
    Saitz, E. and Tomsia, A.P., Kinetics of High-Temperature Spreading, Current Opinion Solid State Mater. Sci., 2005, vol. 9, pp. 167–173.CrossRefGoogle Scholar
  7. 7.
    Ostrovskaya, L., Perevertailo, V., Ralchenko, V., et al., Wettability and Surface Energy of Oxidized and Hydrogen Plasma-Treated Diamond Films, Diamond Relat. Mater., 2002, vol. 11, nos. 3–6, pp. 845–850.CrossRefGoogle Scholar
  8. 8.
    Kutsay, O., Loginova, O., Gontar, A., et al., Surface Properties of Amorphous Carbon Films, Diamond Relat. Mater., 2008, vol. 17, nos. 7–10, pp. 1689–1691.CrossRefGoogle Scholar
  9. 9.
    Kutsay, O.M., Kaplunenko, O.I., Gontar, A.G., et al., Wettability of As-Deposited and Implanted Tetrahedral Carbon Films, Engineering of Biomaterials, 2005, vol. VIII, nos. 43–44, pp. 74–75.Google Scholar
  10. 10.
    Piazza, F. and Morell, G., Wettability of Hydrogenated Tetrahedral Amorphous Carbon, Diamond Relat. Mater., 2009, vol. 18, no. 1, pp. 43–50.CrossRefGoogle Scholar
  11. 11.
    Grabarczyk, J., Long-Term Termination of Carbon Layers Synthesized Using RF PACVD Method Onto Metal Substrates, Diamond Relat. Mater., 2011, vol. 20, no. 8, pp. 1133–1136.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • V. M. Perevertailo
    • 1
  • O. G. Gontar
    • 1
  • S. P. Starik
    • 1
  • O. B. Loginova
    • 1
  • O. M. Kutsay
    • 1
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations