Skip to main content
Log in

Thermographic studies of a dynamic synthesis product in the C-N system

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The results have been considered of the research into an ultradispersed product synthesized in a hyperspeed flow of a carbon electric-discharge plasma in the nitrogen atmosphere using electron scanning and transmission microscopies, thermography, and IR- Fourier spectroscopy. The aim of the studies has been to remove the impurity carbon phases from the product and to estimate the thermostability of covalent carbon nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sivkov, A.A., Naiden, E.P., and Pak, A.Ya., Dynamic Synthesis of Ultradispersed Crystalline Phases on the C-N System, J. Superhard Materials, 2009, vol. 31, no. 5, pp. 300–305.

    Article  Google Scholar 

  2. Sivkov, A.A., Saigash, A.S., and Pak, A.J., Dynamic Synthesis of Nanodispersed C-N Crystalline Phases, Proc. 9th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows (9th CMM), Tomsk, Russia, 26 Sept. 2008, Tomsk: Publishing house of the IAO SB RAS, 2008, pp. 668–671.

    Google Scholar 

  3. Long-Wei, Yin, Yoshi, Bando, Mu-Sen, Li, et al., Unique Single-Crystalline Beta Carbon Nitride Nanorods, Adv. Mater., 2003, vol. 15, no. 21, pp. 1840–1844.

    Article  Google Scholar 

  4. Gerasimov, D.Yu., Saigash, A.S., and Sivkov, A.A., RF Patent 61 856, Byul. no. 7, 2007.

  5. Kurdyumov, A.V. and Solozhenko, V.L., Synthesis and Structure of Ternary Phases in the B-C-N System (A Review), J. Superhard Materials, 1999, vol. 21, no. 6, pp. 1–15.

    Google Scholar 

  6. Lin, Liu, Ding, Ma, Heng, Zheng, et al., Synthesis and Characterization of Microporous Carbon Nitride, Microporous Mesoporous Mater., 2008, vol. 110, pp. 216–222.

    Article  Google Scholar 

  7. Yanping, Liu, Yao, Liu, Yi, Lin, et al., Purifying Double-Walled Carbon Nanotubes by Vacuum High-Temperature Treatment, Nanotechnology, 2007, vol. 18, pp. 1–6.

    Google Scholar 

  8. Soo-Jin, Park and Min-Kang, Seo, Roles of Interfaces on Physicochemical Properties of Carbon Nanotubes/Epoxy Matrix Composites, in Advanced Research in Polymer Science, Firas Awaja, Ed., Victoria, Australia: Research Academic Centre for Material and Fibre Innovation Geelong Technology Precinct, Deakin University Geelong, 2006, pp. 133–145.

    Google Scholar 

  9. Joeoong, Hahn, Soo Bong, Heo, and Jung Sang, Suh, Catalyst-Free Synthesis of High-Purity Carbon Nanotubes by Thermal Plasma Jet, Carbon, 2005, vol. 43, no. 12, pp. 2638–2641.

    Article  Google Scholar 

  10. Rakov, E.G., Nanotrubki i fullereny. Uchebnoe posobie (Nanotubes and Fullerenes. Textbook), Moscow: Universitetskaya Kniga, Lotos, 2006.

    Google Scholar 

  11. Kim, K.S., Moradian, A., Mostaghimi, J., et al., Synthesis of Single-Walled Carbon Nanotubes by Induction Thermal Plasma, Nano Res., 2009, vol. 2, pp. 800–817.

    Article  CAS  Google Scholar 

  12. Koshcheev, A.P., Thermodesorption Mass-Spectroscopy in the Light of the Solution of the Problem of Certification and Unification of Detonation Nanodiamonds Surface Properties, Ross. Khim. Zh. (J. Mendeleev Russian Chem. Soc.) 2008, vol. 52, no. 5, pp. 88–96.

    CAS  Google Scholar 

  13. Apolonskaya, I.A., Tyurnina, A.V., Tyurnina, P.G., and Obraztsov, A.N., Thermal Oxidation of Detonation Nanodiamond, Moscow University Physics Bulletin, 2009, vol. 64, pp. 433–436.

    Article  Google Scholar 

  14. Dolmatov, V.Yu., On Elemental Composition and Crystal-Chemical Parameters of Detonation Nanodiamonds, J. Superhard Materials, 2009, vol. 31, pp. 158–164.

    Article  Google Scholar 

  15. Teter, D.M. and Hemley, R.J., Low-Compressibility Carbon Nitrides, Science, 1996, vol. 271, no. 5245, pp. 53–54.

    Article  CAS  Google Scholar 

  16. Vikulin, V.V., Manufacturing Products Based on Si3N4 and the Use of Them in the Aerospace Industry, Perspektivnye Materialy, 2006, no. 5, 14–19.

  17. Yang, L., May, P. W., Yin, L., et al. Ultrafine Carbon Nitride Nanocrystals Synthesized by Laser Ablation in Liquid Solution, J. Nanoparticle Research, 2007, vol. 9, pp. 1181–1185.

    Article  CAS  Google Scholar 

  18. Gu Yousong, Znang Yougping, Gnang Xiangrong, et al., Synthesis and Characterization of C3N4 Hard Films, Sci. China, 2000, vol. 43, no. 2, pp. 185–197.

    Article  CAS  Google Scholar 

  19. Hu, L., Ji, S., Xiao, T., et al., Preparation and Characterization of Tungsten Carbide Confined in the Channels of SBA-15 Mesoporous Silica, J. Phys. Chem. B, 2007, vol. 111, pp. 3599–3608.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Sivkov, A.Ya. Pak, I.A. Rakhmatullin, 2011, published in Sverkhtverdye Materialy, 2011, Vol. 33, No. 3, pp. 46–54.

About this article

Cite this article

Sivkov, A.A., Pak, A.Y. & Rakhmatullin, I.A. Thermographic studies of a dynamic synthesis product in the C-N system. J. Superhard Mater. 33, 179–185 (2011). https://doi.org/10.3103/S1063457611030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457611030063

Keywords

Navigation