Skip to main content
Log in

Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

With density functional theory, structural, electronic and mechanical properties of tantalum monocarbide (TaC) and tantalum mononitride (TaN) of the tungsten carbide (WC), nickel arsenide (NiAs), rock salt (NaCl), cesium chloride (CsCl), and zinc blende structure were investigated, respectively. Our results indicate that TaN of the WC-type structure (TaN-WC), which has a large bulk modulus, Young’s modulus, and a small Poisson’s ratio, is the most stable one among the considered compounds. The theoretical hardness of TaN-WC is 37.1 GPa, which indicates that TaN-WC is a potential candidate structure to be one of the ultraincompressible and hard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, A.Y., and Cohen, M.L., Prediction of New Low Compressibility Solids, Science, 1989, vol. 245, no. 4920, pp. 841–842.

    Article  CAS  Google Scholar 

  2. He, J., Guo, L., Yu, D., et al., Hardness of Cubic Spinel Si3N4, Appl. Phys. Lett., 2004, vol. 85, no. 23, pp. 5571–5573.

    Article  CAS  Google Scholar 

  3. Occelli, F., Loubeyre, P., and Toullec, R.L., Properties of Diamond under Hydrostatic Pressures up to 140 GPa, Nat. Mater., 2003, vol. 2, no. 3, pp. 151–154.

    Article  CAS  Google Scholar 

  4. Chung, H.Y., Weinberger, M.B., Levine, J.B., et al., Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.

    Article  CAS  Google Scholar 

  5. Liang, Y., Li, C., Guo, W., and Zhang, W., First-Principles Investigation of Technetium Carbides and Nitrides, Phys. Rev. B, 2009, vol. 79, no. 2, pp. 024111–024115.

    Article  Google Scholar 

  6. Kaner, R.B., Gilman, J.J., and Tolbert, S.H., Designing Superhard Materials, Science, 2005, vol. 308, no. 5726, pp. 1268–1269.

    Article  CAS  Google Scholar 

  7. Cumberland, R.W., Weinberger, M.B., Gilman, J.J., et al., Osmium Diboride, an Ultra-Incompressible, Hard Material, J. Am. Chem. Soc., 2005, vol. 127, no. 20, pp. 7264–7265.

    Article  CAS  Google Scholar 

  8. Fan, C.Z., Zeng, S.Y., Li, L.X., et al., Potential Superhard Osmium Dinitride with Fluorite and Pyrite Structure: First-Principles Calculations, Phys. Rev. B, 2006, vol. 74, no. 12, pp. 125118–125123.

    Article  Google Scholar 

  9. Zerr, A., Meihe, G., and Riedel, R. Synthesis of Cubic Zirconium and Hafnium Nitride Having Th3P4 Structure, Nat. Mater., 2003, vol. 2, no. 3, pp. 185–189.

    Article  CAS  Google Scholar 

  10. Gu, Q.F., Krauss, G., and Steurer, W., Transition Metal Borides: Superhard versus Ultra-Incompressible, Adv. Mater., 2008, vol. 20, no. 19, pp. 3620–3626.

    Article  CAS  Google Scholar 

  11. Lu, X.G., Selleby, M., and Sundman, B. Calculations of Thermophysical Properties of Cubic Carbides and Nitrides Using the Debye-Grüneisen Model, Acta Mater., 2007, vol. 55, no. 4, pp. 1215–1226.

    Article  CAS  Google Scholar 

  12. Zheng, J.C., Superhard Hexagonal Transition Metal and Its Carbide and Nitride: Os, OsC, and OsN, Phys. Rev. B, 2005, vol. 72, no. 5, pp. 052105–052108.

    Article  Google Scholar 

  13. Fan, C.Z., Zeng, S.Y., Zhan, Z.J., et al., Low Compressible Noble Metal Carbides with Rocksalt Structure: Ab initio Total Energy Calculations of the Elastic Stability, Appl. Phys. Lett., 2006, vol. 89, no. 7, pp. 071913–071915.

    Article  Google Scholar 

  14. Peng, F., Fu, H., and Yang X. Ab initio Study of Phase Transition and Thermodynamic Properties of PtN, Physica B, 2008, vol. 403, no. 17, pp. 2851–2855.

    Article  CAS  Google Scholar 

  15. Patil, S.K.R., Khare, S.V., Tuttle, B.R., et al., Mechanical Stability of Possible Structures of PtN Investigated Using First-Principles Calculations, Phys. Rev. B, 2006, vol. 73, no. 10, pp. 104118–104125.

    Article  Google Scholar 

  16. Uddin, J. and Scuseria, G.E., Structures and Electronic Properties of Platinum Nitride by Density Functional Theory, ibid., 2005, vol. 72, no. 3, pp. 035101–035106; Uddin, J. and Scuseria, G.E., Erratum: Structures and Electronic Properties of Platinum Nitride by Density Functional Theory, ibid., 2005, vol. 72, no. 3, pp. 119902–119902.

    Article  Google Scholar 

  17. Kanoun, M.B., Goumri-Said, S., and Jaouen, M., Structure and Mechanical Stability of Molybdenum Nitrides: A First-Principles Study, ibid., 2007, vol. 76, no. 13, pp. 134109–134112.

    Article  Google Scholar 

  18. Grossman, J.C., Mizel, A., Côté, M., et al., Transition Metals and Their Carbides and Nitrides: Trends in Electronic and Structural Properties, ibid., 1999, vol. 60, no. 9, pp. 6343–6347.

    Article  CAS  Google Scholar 

  19. Wang, Y.X., Ultra-Incompressible and Hard Technetium Carbide and Rhenium Carbide: First-Principles Prediction, Phys. Stat. Sol. (RRL), 2008, vol. 2, no. 3, pp. 126–128.

    Article  CAS  Google Scholar 

  20. Chen, Z.W., Gu, M.X., Sun, C.Q., et al., Ultrastiff Carbides Uncovered in First Principles, Appl. Phys. Lett., 2007, vol. 91, no. 6, pp. 061905–061907.

    Article  Google Scholar 

  21. Brown, H.L., Armstrong, P.E., and Kempter, C.P., Elastic Properties of Some Polycrystalline Transition Metal Monocarbides, J. Chem. Phys., 1966, vol. 45, no. 2, pp. 547–549.

    Article  CAS  Google Scholar 

  22. Jun, C.K. and Shafffer, P.T.B., Elastic Moduli of Niobium Carbide and Tantalum Carbide at High Temperature, J. Less-Common Met., 1971, vol. 23, no. 4, pp. 367–373.

    Article  CAS  Google Scholar 

  23. Dodd, S.P., Cankurtatan, M., and James, B., Ultrasonic Determination of the Elastic and Nonlinear Acoustic Properties of Transition-Metal Carbide Ceramics: TiC and TaC, J. Mater. Sci., 2003, vol. 38, no. 6, pp. 1107–1115.

    Article  CAS  Google Scholar 

  24. Stampfl, C. and Freeman, A.J., Stable and Metastable Structures of the Multiphase Tantalum Nitride System, Phys. Rev. B, 2005, vol. 71, no. 2, pp. 024111–024115.

    Article  Google Scholar 

  25. Sahnoun, M., Daul, C., Driz, M., et al., FP-LAPW Investigation of Electronic Structure of TaN and TaC Compounds, Comput. Mater. Sci., 2005, vol. 33, nos. 1–3, pp. 175–183.

    Article  CAS  Google Scholar 

  26. Segall, M.D., Lindan, P.L.D., Probert, M.J., et al., First-Principles Simulation: Ideas, Illustrations and the CASTEP Code, J. Phys.: Condens. Matter., 2002, vol. 14, no. 11, pp. 2717–2744.

    Article  CAS  Google Scholar 

  27. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, vol. 41, no. 11, pp. 7892–7895.

    Article  Google Scholar 

  28. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996 vol. 77, no. 18, pp. 3865–3868.

    Article  CAS  Google Scholar 

  29. Monkhorst, H.J. and Pack, J.D., Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, vol. 13, no. 12, pp. 5188–5192; Pack, J.D. and Monkhorst, H.J., Special Points for Brillouin-Zone Integrations — a Reply, ibid., 1977, vol. 16, no. 4, pp. 1748–1749.

    Article  Google Scholar 

  30. Venables, J.A. and English, C.A., Electron Diffraction and the Structure of α-N2, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 1974, vol. 30, no. 4, pp. 929–935.

    Article  Google Scholar 

  31. Hill, R., The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A (London), 1952, vol. 65, no. 5, pp. 349–354.

    Article  Google Scholar 

  32. Wu, Z., Zhao, E., Xiang, H., et al., Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles, Phys. Rev. B, 2007, vol. 76, no. 5, pp. 054115–054129.

    Article  Google Scholar 

  33. Weber, W., Lattice Dynamics of Transition-Metal Carbides, ibid., 1973, vol. 8, no. 11, pp. 5082–5092.

    Article  CAS  Google Scholar 

  34. Andrievski R.A., Superhard Materials Based on Nanostructured High-Melting Point Compounds: Achievements and Perspectives, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, nos. 4–6, pp. 447–452.

    Article  CAS  Google Scholar 

  35. Gao, F., He, J., Wu, E., et al., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 015502–015505.

    Article  Google Scholar 

  36. Guo, X., Li, L., Liu, Z., et al., Hardness of Covalent Compounds: Roles of Metallic Component and d Valence Electrons, J. Appl. Phys., 2008, vol. 104, no. 2, pp. 023503–023509.

    Article  Google Scholar 

  37. http://www.ultramet.com/ceramic-protective-coatings.html

  38. Lee, G.R., Lee, J.J., Shin, C.S., et al., Self-Organized Lamellar Structured Tantalum-Nitride by UHV Unbalanced-Magnetron Sputtering, Thin Solid Films, 2005, vol. 475, nos. 1–2, pp. 45–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Jianfu Li, Xiaoli Wang, Kai Liu, Daoyong Li, Li Chen, 2011, published in Sverkhtverdye Materialy, 2011, Vol. 33, No. 3, pp. 39–45.

About this article

Cite this article

Li, J., Wang, X., Liu, K. et al. Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride. J. Superhard Mater. 33, 173–178 (2011). https://doi.org/10.3103/S1063457611030051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457611030051

Keywords

Navigation