Journal of Superhard Materials

, Volume 32, Issue 3, pp 167–176 | Cite as

Thermodynamic model of hardness: Particular case of boron-rich solids

  • V. A. Mukhanov
  • O. O. Kurakevych
  • V. L. Solozhenko
Theory of Hardness and Superhard Materials Production, Structure, Properties

Abstract

A number of successful theoretical models of hardness have been developed recently. A thermodynamic model of hardness, which supposes the intrinsic character of correlation between hardness and thermodynamic properties of solids, allows one to predict hardness of known or even hypothetical solids from the data on Gibbs energy of atomization of the elements, which implicitly determine the energy density per chemical bonding. The only structural data needed is the coordination number of the atoms in a lattice. Using this approach, the hardness of known and hypothetical polymorphs of pure boron and a number of boron-rich solids has been calculated. The thermodynamic interpretation of the bonding energy allows one to predict the hardness as a function of thermodynamic parameters. In particular, the excellent agreement between experimental and calculated values has been observed not only for the room-temperature values of the Vickers hardness of stoichiometric compounds, but also for its temperature and concentration dependencies.

Key words

superhard materials boron theory of hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurakevych, O.O., Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review), J. Superhard Mater., 2009, vol. 31, no. 3, pp. 139–157.CrossRefGoogle Scholar
  2. 2.
    Brazhkin, V.V., Lyapin, A.G., Hemley, R.J., Harder than Diamond: Dreams and Reality, Philosoph. Mag. A, 2002, vol. 82, no. 2, pp. 231–253.Google Scholar
  3. 3.
    Gao, F.M., He, J.L., Wu, E.D., et al., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 015502 1–015502 4.CrossRefGoogle Scholar
  4. 4.
    Simunek, A. and Vackar, J., Hardness of Covalent and Ionic Crystals: First-Principle Calculations, Phys. Rev. Lett., 2006, vol. 96, no. 8, pp. 085501 1–085501 4.CrossRefGoogle Scholar
  5. 5.
    Teter, D.M. and Hemley, R.J., Low-Compressibility Carbon Nitrides, Science, 1996, vol. 271, no. 5245, pp. 53–55.CrossRefGoogle Scholar
  6. 6.
    Jhi, S.-H., Louie, S.G., Cohen, M.L., et al., Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides, Phys. Rev. Lett., 2001, vol. 86, no. 15, pp. 3348.CrossRefGoogle Scholar
  7. 7.
    Gilman, J.J., Why Silicon Is Hard, Science, 1993, vol. 261, no. 5127, pp. 1436–1439.CrossRefGoogle Scholar
  8. 8.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic Aspects of Materials’ Hardness: Prediction of Novel Superhard High-Pressure Phases, High Press. Res., 2008, vol. 28, no. 4, pp. 531–537.CrossRefGoogle Scholar
  9. 9.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., The Interrelation between Hardness and Compressibility of Substances and Their Structure and Thermodynamic Properties, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 368–378.CrossRefGoogle Scholar
  10. 10.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Hardness of Materials at High Temperature and High Pressure, Phylosoph. Mag., 2009, vol. 89, no. 25, pp. 2117–2127.CrossRefGoogle Scholar
  11. 11.
    Novikov N., V. and Dub, S.N., Fracture Toughness of Diamond Single Crystals, J. Hard Mater., 1991, vol. 2, pp. 3–11.Google Scholar
  12. 12.
    Sumiya, H., Toda, N., and Satoh, S., Mechanical Properties of Synthetic Type IIa Diamond Crystal, Diamond Relat. Mater., 1997, vol. 6, no. 12, pp. 1841–1846.CrossRefGoogle Scholar
  13. 13.
    Solozhenko, V.L., Dub, S.N., and Novikov, N.V., Mechanical Properties of Cubic BC2N, a New Superhard Phase, ibid., 2001, vol. 10, no. 12, pp. 2228–2231.CrossRefGoogle Scholar
  14. 14.
    Sintez sverkhtverdykh materialov (Synthesis of Superhard Materials), 3 vol., vol. 1. Synthetic Superhard Materials, Novikov, N.V., Bondarev, E.K., Vishnevskii A.S., et al., Eds., Kiev: Naukova Dumka, 1986.Google Scholar
  15. 15.
    Emsley, J., The Elements, Oxford: Clarendon press, 1991.Google Scholar
  16. 16.
    Liang, Q., Yan, C.-S., Meng, Y., et al., Enhancing the Mechanical Properties of Single-Crystal CVD Diamond, J. Phys.: Cond. Matter., 2009, vol. 21, no. 36, pp. 364215.CrossRefGoogle Scholar
  17. 17.
    Mukhanov, V.A., Kurakevich, O.O., and Solozhenko, V.L., On the Hardness of Boron (III) Oxide, J. Superhard Mater., 2008, vol. 30, no. 1, pp. 71–72.Google Scholar
  18. 18.
    Solozhenko, V.L., Kurakevych, O.O., Andrault, D., et al., Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 6, pp. 015506.CrossRefGoogle Scholar
  19. 19.
    Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On Hardness of Gamma Boron, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.CrossRefGoogle Scholar
  20. 20.
    Haines, J. and Leger, J. M., The Search for Superhard Materials: a New Approach, ibid., 1998, vol. 20, no. 2, pp. 3–10.Google Scholar
  21. 21.
    Rizzo, H.F., Simmons, W.C., and Bielstein, H.O., The Existence and Formation of the Solid B6O, J. Electrochem. Soc., 1962, vol. 109, no. 11, pp. 1079–1082CrossRefGoogle Scholar
  22. 22.
    Lowther, J.E., Potential Superhard Phases and the Stability of Diamond-Like Boron-Carbon Structures, J. Phys.: Cond. Matter., 2005, vol. 17, no. 21, pp. 3221–3229.CrossRefGoogle Scholar
  23. 23.
    Solozhenko, V.L., Kurakevych, O.O., Andrault, D., et al., Erratum: Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 17, pp. 179901.CrossRefGoogle Scholar
  24. 24.
    Trim, D.L., Design of Industrial Catalysts, Chemical Engineering Monographs, Amsterdam: Elsevier, 1980.Google Scholar
  25. 25.
    Gusarov, V.V., Statika i dinamika polikristallicheskikh system na osnove tugoplavkikh oksidov (Statics and Dynamics of Polycrystalline Systems Based on Refractory Oxides), St. Petersbourg: St. Petersbourg State University, 1996, p. 44.Google Scholar
  26. 26.
    Nellis, W.J., Systematics of Compression of Hard Materials, J. Phys.: Conf. Ser., 2008, vol. 121, no. 6, pp. 062005 (5 p.)CrossRefGoogle Scholar
  27. 27.
    Mao, W.L., Mao, H.K., Eng, P.J., et al., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427.CrossRefGoogle Scholar
  28. 28.
    Li, Q., Ma, Y., Oganov, A.R., et al., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett., 2009, vol. 102, no. 17, pp. 175506.CrossRefGoogle Scholar
  29. 29.
    Meng, Y., Mao, H.-K., Eng, P.J., et al., The Formation of sp3 Bonding in Compressed BN, Nature Mater., 2004, vol. 3, no. 2, pp. 111–114.CrossRefGoogle Scholar
  30. 30.
    Ueno, M., Hasegawa, K., Oshima, R., et al., Room-Temperature Transition of Rhombohedral Type Boron-Nitride under High Static Pressure, Phys. Rev. B, 1992, vol. 45, no. 18, pp. 10226–10230.CrossRefGoogle Scholar
  31. 31.
    Yagi, T., Utsumi, W., Yamakata, M., et al., High-Pressure in situ X-ray-Diffraction Study of the Phase Transformation from Graphite to Hexagonal Diamond at Room Temperature, ibid., 1992, vol. 46, no. 10, pp. 6031–6039.CrossRefGoogle Scholar
  32. 32.
    Solozhenko, V.L. and Kurakevych, O.O., Reversible Pressure-Induced Structure Changes in Turbostratic BN-C Solid Solutions, Acta Cryst. B, 2005, vol. 61, no. 5, pp. 498–503.CrossRefGoogle Scholar
  33. 33.
    Solozhenko, V.L., Kurakevych, O.O., and Kuznetsov, A.Y., Raman Scattering from Turbostratic Graphite-Like BC4 under Pressure, J. Appl. Phys., 2007, vol. 102, no. 6, pp. 063509 1–063509 6.CrossRefGoogle Scholar
  34. 34.
    Solozhenko, V.L., Kurakevych, O.O., Solozhenko, E.G., et al., Equation of State of Graphite-Like BC, Solid State Comm., 2006, vol. 137, no. 5, pp. 268–271.CrossRefGoogle Scholar
  35. 35.
    Talyzin, A.V., Solozhenko, V.L., Kurakevych, O.O., et al., Colossal Pressure-Induced Lattice Expansion of Graphite Oxide in the Presence of Water, Angewandte Chemie International Edition, 2008, vol. 47, no. 43, pp. 8268–8271.CrossRefGoogle Scholar
  36. 36.
    Kurakevych, O.O., Restricted Growth of Solid Phase from Solution, Mater. Chem. Phys., 2007, vol. 105, nos. 2–3, pp. 401–407.CrossRefGoogle Scholar
  37. 37.
    Liang, Q., Yan, C.-S., Meng, Y., et al., Recent Advances in High-Growth Rate Single-Crystal CVD Diamond, Diamond Relat. Mater., 2009, vol. 18, nos. 5–8, pp. 698–703.CrossRefGoogle Scholar
  38. 38.
    Oganov, A.R. and Solozhenko, V.L., Boron: a Hunt for Superhard Polymorphs, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 285–291.CrossRefGoogle Scholar
  39. 39.
    Amberger, E. and Stumpf, W., Gmelin Handbook of Inorganic Chemistry, Berlin: Springer-Verlag, 1981, pp. 112–238.Google Scholar
  40. 40.
    Gabunia, D., Tsagareishvili, O., Darsavelidze, G., et al., Preparation, Structure and Some Properties of Boron Crystals with Different Content of 10B and 11B Isotopes, J. Solid State Chem., 2004, vol. 177, no. 2, pp. 600–604.CrossRefGoogle Scholar
  41. 41.
    Gabunia, D., Tsagareishvili, O., Lezhava, D., et al., Peculiarities of Changes of Some Physico-Mechanical Characteristics of Monoisotopes 10B, 11B and Natural β-Boron, ibid., 2006, vol. 179, no. 9, pp. 2944–2948.CrossRefGoogle Scholar
  42. 42.
    Oganov, A.R., Chen, J., Gatti, C., et al., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, no. 7231, pp. 863–867.CrossRefGoogle Scholar
  43. 43.
    Oganov, A.R., Chen, J., Gatti, C., et al., Addendum: Ionic High-Pressure Form of Elemental boron, ibid., 2009, vol. 460, no. 7252, pp. 292–292.CrossRefGoogle Scholar
  44. 44.
    Le Godec, Y., Kurakevych, O.O., Munsch, P., et al., Equation of State of Orthorhombic Boron, γ-B28, Solid State Comm., 2009, vol. 149, no. 33–34, pp. 1356–1358.CrossRefGoogle Scholar
  45. 45.
    Vlasse, M., Naslain, R., Kasper, J.S., et al., Crystal Structure of Tetragonal Boron Related to α-AlB12, J. Solid State Chem., 1979, vol. 28, no. 3, pp. 289–301.CrossRefGoogle Scholar
  46. 46.
    Domnich, V., Gogotsi, Y., and Trenary, M., Identification of Pressure-Induced Phase Transformations Using Nanoindentation, Mater. Res. Soc. Symp. Proc., 2001, vol. 649, pp. Q8.9.1–Q8.9.6.Google Scholar
  47. 47.
    Kurakevych, O.O. and Solozhenko, V.L., Rhombohedral Boron Subnitride, B13N2, by X-ray Powder Diffraction, Acta Cryst. C, 2007, vol. 63. pp. i80-i82.Google Scholar
  48. 48.
    Solozhenko, V.L. and Kurakevych, O.O., Chemical Interaction in the B-BN System at High Pressures and Temperatures. Synthesis of Novel Boron Subnitrides, J. Solid State Chem., 2009, vol. 182, no. 6, pp. 1359–1364.CrossRefGoogle Scholar
  49. 49.
    Solozhenko, V.L., Kurakevych, O.O., Turkevich, V.Z., et al. On the Problem of the Phase Relations in the B-BN System at High Pressures and Temperatures, J. Superhard Mater., 2009, vol. 31, no. 1, pp. 1–6.CrossRefGoogle Scholar
  50. 50.
    Kurakevych, O.O. and Solozhenko, V.L., 300-K Equation of State of Rhombohedral Boron Subnitride, Solid State Comm., 2009, vol. 149, nos. 47–48, pp. 2169–2171.CrossRefGoogle Scholar
  51. 51.
    Koichi, N., Atsushi, N., and Toshio, H., The Effect of Stoichiometry on Mechanical Properties of Boron Carbide, J. Amer. Ceram. Soc., 1984, vol. 67, no. 1, pp. C-13–C-14.Google Scholar
  52. 52.
    Kurdyumov, A.V., Malogolovets, V.G., Novikov, N.V., et al.,Polimorfnye modifikatsii ugleroda i nitride bora (Polymorph Modifications of Carbon and Boron Nitride), Moscow: Metallurgiya, 1994.Google Scholar
  53. 53.
    Novikov, N.V., Sirota, Y.V., Mal’nev, V.I., et al., Mechanical Properties of Diamond and Cubic BN at Different Temperatures and Deformation Rates, Diamond Relat. Mater., 1993, vol. 2, no. 9, pp. 1253–1256.CrossRefGoogle Scholar
  54. 54.
    Krell, A. and Bakun, O.V. High-Temperature Hardness of Al2O3-Base Ceramics, Acra Metall., 1986, vol. 34, no. 7, pp. 1315–1319.CrossRefGoogle Scholar
  55. 55.
    O’Connor, J.R., Smiltens, J., et al., A High Temperature Semiconductor, Oxford, London, New York, Paris: Pergamon Press, 1960.Google Scholar
  56. 56.
    Marinescu, I.D., Tonshoff, H.K., Inasaki, I., et al. Handbook of Ceramic Grinding and Polishing, Noyes Publications: Berkshire, 2000.Google Scholar
  57. 57.
    Otani, S., Korsukova, M.M., and Aizawa, T., High-Temperature Hardness of ReB2 Single Crystals, J. Alloy. Comp., 2008, vol. 477, nos. 1–2, pp. L28–L29.Google Scholar
  58. 58.
    Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the Hardness of a New Boron Phase, Orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.CrossRefGoogle Scholar
  59. 59.
    Kumashiro, Y., Okada, Y., and Gonda, S., Crystal Growth of Thick Wafers of Boron Phosphide, J. Cryst. Growth, 1984, vol. 70, nos. 1–2, pp. 507–514.CrossRefGoogle Scholar
  60. 60.
    McMillan, P.F., Hubert, H., Chizmeshya, A., et al., Nucleation and Growth of Icosahedral Boron Suboxide Clusters at High Pressure, J. Solid State Chem., 1999, vol. 147, no. 1, pp. 281–290.CrossRefGoogle Scholar
  61. 61.
    Bairamashvili, I.A., Kalandadze, G.I., Eristavi, A.M., et al., An Investigation of the physico-mechanical properties of B6O and SiB4, J. Less Comm. Met., 1979, vol. 67, no. 2, pp. 455–459.CrossRefGoogle Scholar
  62. 62.
    Giunchi, G., Malpezzi, L., and Masciocchi, N., A New Crystalline Phase of the Boron-Rich Metal-Boride Family: the Mg2B25 Species, Solid State Sci., 2006, vol. 8, pp. 1202–1208.CrossRefGoogle Scholar
  63. 63.
    Brutti, S., Colapietro, M., Balducci, G., et al., Synchrotron Powder Diffraction Rietveld Refinement of MgB20 Crystal Structure, Intermetallics, 2002, vol. 10, pp. 811–817.CrossRefGoogle Scholar
  64. 64.
    Higashi, I., Iwasaki, H., Ito, T., et al., Single-Crystal X-ray Diffraction Study of AlB31 of the Beta-Rhombohedral Boron Structure, J. Solid State Chem., 1989, vol. 82, pp. 230–238.CrossRefGoogle Scholar
  65. 65.
    Vlasse, M. and Viala, J.C., The Boron-Silicon Solid Solution: A Structural Study of the SiB-36 Composition, ibid., 1981, vol. 37, no. 2, pp. 181–188.CrossRefGoogle Scholar
  66. 66.
    Vlasse, M., Slack, G.A., Garbauskas, M., et al., The Crystal Structure of SiB6, ibid., 1986, vol. 63, no. 1, pp. 31–45.CrossRefGoogle Scholar
  67. 67.
    Rizzo, H.F. and Bidwell, L.R., Formation and Structure of SiB4, J. Amer. Ceram. Soc., 1960, vol. 43, no. 10, pp. 550–552.CrossRefGoogle Scholar
  68. 68.
    Cook B.A., Harringa, J.L., Lewis, T.L., et al., A New Class of Ultrahard Materials Based on AlMgB14, Scripta Materialia, 2000, vol. 42, no. 6, pp. 597–602.CrossRefGoogle Scholar
  69. 69.
    Gu, Q., Krauss, G., and Steurer, W., Transition Metal Borides: Superhard versus Ultra-Incompressible, Advanced Mater., 2008, vol. 20, no. 19, pp. 3620–3626.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • V. A. Mukhanov
    • 1
  • O. O. Kurakevych
    • 2
  • V. L. Solozhenko
    • 1
  1. 1.LPMTM-CNRSUniversité Paris NordVilletaneuseFrance
  2. 2.IMPMCUniversité P & M CurieParisFrance

Personalised recommendations