Skip to main content
Log in

Treatment of Leather Industry Wastewater Using Coagulation, Ultraviolet/Persulfate Processing and Nanofiltration for Water Recovery

  • WATER TREATMENT AND DEMINERALIZATION TECHNOLOGY
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

This study investigated water recovery with the treatment of leather industry processes wastewater (washing, pickling, and degreasing units) using coagulation, ultraviolet/persulfate (UV/PS) treatment, and nanofiltration processes. Coagulation studies were carried out using alum as the coagulant, and the highest chemical oxygen demand (COD) removal efficiency was obtained at pH 7 for all the wastewater. The highest COD and total organic carbon (TOC) removal were 80.9 and 50.5% in the wastewater washing unit (\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) : 8 g/L, pH 7) and 76.5 and 96.1% in the wastewater degreasing unit (\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) : 16 g/L, pH 6) using UV/PS oxidation, respectively. High COD and TOC removal could not be achieved with UV/PS oxidation in the wastewater pickling unit. In the studies performed with NP030 nanofiltration membrane after UV/PS oxidation, the highest permeability and COD removal was achieved at pH 7 under 4 × 105 Pa pressure in wastewater washing and degreasing units. After 75 min of nanofiltration at pH 7 in washing and degreasing units, the total filtrate amount was 39.8 and 42.3 L/m2 h, respectively. COD concentration in the wastewater washing unit decreased from 4434 to 138 mg/L, while it decreased from 5833 to 212 mg/L in the wastewater degreasing unit with coagulation, UV/PS processing, and nanofiltration. As a result, the treatment of leather industry wastewater through separate streams with coagulation, UV/PS, and nanofiltration, washing, and degreasing unit wastewater provides very high COD removal. Also, it has been shown impossible to treat the pickling unit wastewater by UV/PS oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Pal, P., Sardar, M., Pal, M., Chakrabortty, S., and Nayak, J., Modelling forward osmosis nanofiltration integrated process for treatment and recirculation of leather industry wastewater, Comput. Chem. Eng., 2019, vol. 127, pp. 99–110. https://doi.org/10.1016/j.compchemeng.2019.05.018

    Article  CAS  Google Scholar 

  2. Mia, M.A.S., Alam, N.E., Ahmad, F., Alam, Z., and Rahman, M., Treatment of tannery wastewater by electrocougulation technology, J. Sci. Innovative Res., 2017, vol. 6, pp. 129–134. https://doi.org/10.31254/jsir.2017.6403

    Article  Google Scholar 

  3. Thanikaivelan, P., Rao, J.R., Nair, B.U., and Ramasam, T., Recent trends in leather making: Processes, problems, and pathways, Crit. Rev. Environ. Sci. Technol., 2005, vol. 35, pp. 37–79. https://doi.org/10.1080/10643380590521436

    Article  CAS  Google Scholar 

  4. Di Iaconi, C., Lopez, A., Ramadori, R., Di Pinto, A.C., and Passino, R., Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR), Water Res., 2002, vol. 36, pp. 2205–2214. https://doi.org/10.1016/S0043-1354(01)00445-6

    Article  CAS  Google Scholar 

  5. Mandal, T., Dasgupta, D., Mandal, S., and Dafta, S., Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process, J. Hazard. Mater., 2010, vol. 180, pp. 204–211. https://doi.org/10.1016/j.jhazmat.2010.04.014

    Article  CAS  Google Scholar 

  6. Jazic, J.M., Durkic, T., Basic, B., Watson, M., Apostolovic, T., Tubic, A., and Agbaba, J., Degradation of a chloroacentanilide herbicide in natural waters using UV activated hydrogen peroxide, persulfate and peroxymonosulfate processes, Environ. Sci. Water Res. Technol., 2020, vol. 6, pp. 2800–2815. https://doi.org/10.1039/D0EW00358A

    Article  Google Scholar 

  7. Liang, C., Wang, Z.S., and Bruel, C., Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 2007, vol. 66, pp. 106–113. https://doi.org/10.1016/j.chemosphere.2006.05.026

    Article  CAS  Google Scholar 

  8. Matzek, I.W. and Carter, K.E., Activated persulfate for organic chemical degradation: A review, Chemosphere, 2016, vol. 151, pp. 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  Google Scholar 

  9. Huang, Y.R., Kong, Y., Li, H.Z., and Wei, X.M., Removal of Crystal Violet by ultraviolet/persulfate: Effects, kinetics and degradation pathways, Environ. Technol. Innovation, 2020, vol. 18, p. 100780. https://doi.org/10.1016/j.eti.2020.100780

    Article  Google Scholar 

  10. Crimi, M.L. and Taylor, J., Experimental evaluation of catalyzed hydrogen peroxide and sodium persulphate for destruction of BTEX contaminants, Soil Sediment Contam., 2007, vol. 16, pp. 29–45. https://doi.org/10.1080/15320380601077792

    Article  CAS  Google Scholar 

  11. Ahmad, N.N.R., Ang, W.L., Teow, Y.H., Mohammad, A.W., and Hilal, N., Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review, J. Water Process Eng., 2022, vol. 45, p. 102478. https://doi.org/10.1016/j.jwpe.2021.102478

    Article  Google Scholar 

  12. Shi, Y.T., Meng, X., Yao, L., and Tian, M., A full-scale study of nanofiltration: Separation and recovery of NaCl and Na2SO4 from coal chemical industry wastewater, Desalination, 2021, vol. 517, p. 115239. https://doi.org/10.1016/j.desal.2021.115239

    Article  CAS  Google Scholar 

  13. Tian, D., Zhou, H., Zhang, H., Zhou, P., You, J., Yao, G., Pan, Z., Liu, Y., and Lai, B., Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies, Chem. Eng. J., 2022, vol. 428, p. 131166. https://doi.org/10.1016/j.cej.2021.131166

    Article  CAS  Google Scholar 

  14. Chowdhury, M., Mostafa, M.G., Biswas, T.K., and Saha, A.K., Treatment of leather industrial effluents by filtration and coagulation processes, Water Resour. Ind., 2013, vol. 3, pp. 11–22. https://doi.org/10.1016/j.wri.2013.05.002

    Article  Google Scholar 

  15. Al-Mutairi, N.Z., Hamoda, M.F., and Al-Ghusain, I., Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant, Bioresour. Technol., 2004, vol. 95, pp. 115–119. https://doi.org/10.1016/j.biortech.2004.02.017

    Article  CAS  Google Scholar 

  16. Dalvand, A., Gholibegloo, E., Ganjali, M.R., Golchinpoor, N., Khazaei, M., Kamani, H., Hosseini, S.S., and Mahv, A.H., Comparison of Moringa stenopetala seed extract as a clean coagulant with alum and Moringa stenopetala–alum hybrid coagulant to remove direct dye from textile wastewater, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 16396–16405. https://doi.org/10.1007/s11356-016-6708-z

    Article  CAS  Google Scholar 

  17. Wang, J. and Wang, S., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 2018, vol. 334, pp. 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059

    Article  CAS  Google Scholar 

  18. Xinhui, X., Fengyi, Z., Jianju, L., Haizhou, Y., Liangliang, W., Qiaoyang, L., Junqiu, J., Guangshan, Z., and Qingliang, Z., A review study on sulfate radical based advanced oxidation processes for domestic/industrial wastewater treatment: Degradation, efficiency, and mechanism, Front. Chem., 2020, vol. 8, p. 592056. https://doi.org/10.3389/fchem.2020.592056

    Article  CAS  Google Scholar 

  19. Chen, G., Wu, G., Li, N., Lu, X., Zhao, J., He, M., Yan, B., Zhang, H., Duan, X., and Wang, S., Landfill leachate treatment by persulphate related advanced oxidation technologies, J. Hazard. Mater., 2021, vol. 418, p. 126355. https://doi.org/10.1016/j.jhazmat.2021.126355

    Article  CAS  Google Scholar 

  20. Gu, Z., Chen, W., Li, Q., and Zhang, A., Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave coupled ferrous activated persulfate process, Chemosphere, 2019, vol. 215, pp. 82–91. https://doi.org/10.1016/j.chemosphere.2018.10.009

    Article  CAS  Google Scholar 

  21. Chen, W., Luo, Y., Ran, G., and Li, Q., Microwave induced persulfate hydrogen peroxide binary oxidant process for the treatment of dinitrodiazophenol industrial wastewater, Chem. Eng. J., 2020, vol. 382, p. 122803. https://doi.org/10.1016/j.cej.2019.122803

    Article  CAS  Google Scholar 

  22. Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., and Niu, R., Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV, and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 2010, vol. 179, pp. 552–558. https://doi.org/10.1016/j.jhazmat.2010.03.039

    Article  CAS  Google Scholar 

  23. Xu, C., Yang, G., Li, J., Zhang, S., Fang, Y., Peng, F., Zhang, S., and Qiu, R., Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co–V bimetallic oxides, J. Colloid Interface Sci., 2022, vol. 619, pp. 188–197. https://doi.org/10.1016/j.jcis.2022.03.126

    Article  CAS  Google Scholar 

  24. Anipsitakis, G.P. and Dionysiou, D.D., Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 2004, vol. 38, pp. 3705–3712. https://doi.org/10.1021/es035121o

    Article  CAS  Google Scholar 

  25. Amor, C., Chueca, J.R., Joana, L., Fernandes, J.L., Dominguez, J.R., Lucas, M.J., and Peres, J.A., Winery wastewater treatment by sulphate radical based advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation, Process Saf. Environ. Prot., 2019, vol. 122, pp. 94–101. https://doi.org/10.1016/j.psep.2018.11.016

    Article  CAS  Google Scholar 

  26. Michelon, M., Manera, A.P., Carvalho, A.L., and Filho, F.M., Concentration and purification of galacto-oligosaccharides using nanofiltration membranes, Int. J. Food Sci. Technol., 2014, vol. 49, pp. 1953–1961. https://doi.org/10.1111/ijfs.12582

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the project no. NKUBAP.06.YL.21.336 within the scope of the master’s thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rıza Dinçer.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Rıza Dinçer, Çifçi, D.İ. & Karaca, F. Treatment of Leather Industry Wastewater Using Coagulation, Ultraviolet/Persulfate Processing and Nanofiltration for Water Recovery. J. Water Chem. Technol. 46, 176–185 (2024). https://doi.org/10.3103/S1063455X2402005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X2402005X

Keywords:

Navigation