Singare, P.U. and Dhabarde, S.S., Toxic metals pollution due to industrial effluents released along Dombivali Industrial Belt of Mumbai, India, Eur. J. Environ. Saf. Sci., 2014, vol. 2, no. 1, pp. 5–11.
CAS
Google Scholar
Ahaduzzaman Sarkar, P., Anjum, A., and Khan, E.A., Overview of major industries in Bangladesh, J. Chem. Eng., 2017, vol. 30, no. 1, pp. 51–58.
Article
Google Scholar
Dey, S. and Islam, A.A., Review on textile wastewater characterization in Bangladesh, Resour. Environ., 2015, vol. 5, no. 1, pp. 15–44. https://doi.org/10.5923/j.re.20150501.03
Article
Google Scholar
Campos, R., Kandelbauer, A., Robra, K.H., Artur, C.P., and Gubitz, G.M., Indigo degradation with purified laccases from Trametes hirsuta and Sclerotim rolfsii,
J. Biotechnol., 2001, vol. 8, pp. 131–39.
Article
Google Scholar
Zollinger, H., Azo dyes and pigments, in Colour Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments, New York: VCH, 1991.
Google Scholar
Hossain, M.A., Rahman, G.K.M., Rahman, M.M., Molla, A.H., Rahman, M.M., and Uddin, M.K., Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil, J. Environ. Sci., 2015, vol. 30, pp. 231–240.
CAS
Article
Google Scholar
Egbuikwem, P.N., Mierzwa, J.C., and Saroj, D.P., Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions, Agric. Water Manage., 2020, vol. 231, 106034. https://doi.org/10.1016/j.agwat.2020.106034
Article
Google Scholar
Ben Mansour, H., Houas, I., Montassar, F., Ghedira, K., Bariller, D., Mosrati, R., and Chekir, L., Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation, Environ. Sci. Pollut. Res., 2012, vol. 19, pp. 2634–2643.
CAS
Article
Google Scholar
Li, S., Zhao, S., Yan, S., Qiu, Y., Song, C., Li, Y., and Kitamura, Y., Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production: A review, China J. Chem. Eng., 2019, vol. 27, no. 12, pp. 2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028
CAS
Article
Google Scholar
Leahy, J.G. and Colwell, R.R., Microbial degradation of hydrocarbons in the environment, Microbiol. Rev., 1990, vol. 54, no. 3, pp. 305–315.
CAS
Article
Google Scholar
Martin, J.P., Use of acid, Rose Bengal and streptomycin in the plate method for estimating soil fungi, Soil Sci., 1950, vol. 69, pp. 215–232.
CAS
Article
Google Scholar
Inbar, Y., Chen, Y., Hadar, Y., and Hoitink, H.A.J., New approaches to compost maturity. BioCycle, 1990, vol. 12, pp. 64–68.
Google Scholar
Standard Methods for the Examination of the Water and Wastewater, Washington, DC: Am. Public Health Assoc., 21st ed.
Miller, J.H., Giddens, J.E., and Foster, A.A., A survey of the fungi of the forest and cultivated soils of Georgia, Mycologia, 1957, vol. 49, pp. 779–808.
Article
Google Scholar
Bohacz, J. and Kornillowicz-Kowalska, T., Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages, J. Environ. Manage., 2020, vol. 266, 110573. https://doi.org/10.1016/j.jenvman.2020.110573
CAS
Article
Google Scholar
Anu, M., Avarnadevi, J., Bharani, M., and Prava, P.L., Treatment of dye industry effluent by free and immobilized fungi, Int. J. Pharm. Life Sci., 2013, vol. 4, no. 1, pp. 2340–2346.
Google Scholar
Salar, R.K., Kumar, J., and Kumar, S., Isolation and evaluation of fungal strains from textile effluent disposal sites for decolorization of various azo dyes, Terr. Aquat. Environ. Toxicol., 2012, vol. 6, no. 2, pp. 96–99.
Google Scholar
Talukdar, D., Jasrotia, T., Sharma, R., Jaglan, S., Kumar, R., Vats, R., Kumar, R., Mahnashi, M.H., and Umar, A., Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites, Environ. Technol. Innovation, 2020, 101050. https://doi.org/10.1016/j.eti.2020.101050
Chen, S.H. and Ting, A.S., Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost, J. Environ. Manage., 2015, vol. 150, pp. 274–280.
CAS
Article
Google Scholar
Molla, A.H. and Khan, H.I., Detoxification of textile effluent by fungal treatment and its performance in agronomic usages, Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 10820–10828. https://doi.org/10.1007/s11356-018-1361-3
CAS
Article
Google Scholar
Dwivedi, P. and Tomar, R.S., Bioremediation of textile effluent for degradation and decolourization of synthetic dyes: A review, Int. J. Curr. Res. Life Sci., 2018, vol. 7, no. 4, pp. 1948–1951.
Google Scholar
He, X.L., Song, C., Li, Y.Y., Wang, N., Xu, L., Han, X., and Wei, D.S., Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions, Ecotoxicol. Environ. Saf., 2018, vol. 150, pp. 232–239.
CAS
Article
Google Scholar
Sharma, S. and Malviya, P., Bioremediation of tannery wastewater by Aspergillus niger SPFSL 2-a isolated from tannery sludge, Int. J. Basic Appl. Sci., 2013, vol. 2, no. 3, pp. 88–93.
Google Scholar
Buvaneswari, S., Damodarkumar, A., and Murugesan, S., Bioremediation studies on sugar-mill effluent by selected fungal species, Int. J. Curr. Microbiol. Appl. Sci., 2013, vol. 2, no. 1, pp. 50–58.
Google Scholar
Deepika, G.A. and Dastidar, G.M., Decolorization and degradation studies on dye contaminated effluent from textile industry using Aspergillus sp., Elixir Pollut., 2016, vol. 95, pp. 40679–40684.
Google Scholar