Skip to main content

Chemical Modification of Polyamide Thin-Film Composite Membrane by Surface Grafting of a Vinyl-Based Monomer


Currently, the use of membrane techniques has undergone dynamic growth, particularly due to the diversification of their fields of application. This trend is expected to increase owing to new environmental protection requirements and thanks to the increasingly competitive energy and technical-economic performances offered by membrane processes. New research is constantly being carried out to better understand the functioning of membranes, to create more efficient or more specific membranes, and also to develop processes for new applications. The aim of this work is to improve the performance of a polyamide reverse osmosis membrane by chemical modification of its surface. Thin film polyamide reverse osmosis membranes are widely used for desalination. However, these membranes face a fouling issue that results in low permeation flux, which is undesirable in the reverse osmosis process. An interesting alternative to improve the properties of these polyamide composite membranes is the use of chemical surface modification. In this context, we studied the chemical grafting of vinyl acetate monomer on the surface of a polyamide membrane in order to improve the selectivity towards sodium ion. The chemical grafting was carried out by radical polymerization of vinyl acetate monomer in the presence of benzoil peroxide as an initiator in an organic medium. Unmodified, modified membranes and evolution of the polymerization reaction were analyzed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), interferometric electron microscopy, and contact angle. An application with a front filtration module was investigated to confirm the improved selectivity for sea water. This study revealed an improved efficiency of the reverse osmosis PA membrane after the grafting of polyacetate monomer on the active layer of this membrane.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Zhang, Y., Wan, Y., Pan, G., Shi, H., Yan, H., Xu, J., Guo, M., Wang, Zh., and Liu, Y., Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling, J. Appl. Surf. Sci., 2017, vol. 419, pp. 177–187.

    CAS  Article  Google Scholar 

  2. Raman, L.P., Cheryna, M., and Rajagopalan, N., Consider nanofiltration for membrane separations, J. Chem. Eng. Prog., 1994, vol. 90, pp. 68–74.

    CAS  Google Scholar 

  3. Kang, G. and Cao, Y., Development of antifouling reverse osmosis membranes for water treatment: A review, J. Water. Res., 2012, vol. 46, pp. 584–600.

    CAS  Article  Google Scholar 

  4. Nikkola, J.J., Sievanen, J.M., Raulio, M.J., Wei, J., Vuorinen, J., and Tang, C.Y., Surface modification of thin film composite polyamide membrane using atomic layer deposition method, J. Membr. Sci., 2014, vol. 450, pp. 174–180.

    CAS  Article  Google Scholar 

  5. Sagle, A.C., Van Wagner, E.M., Ju, H., McCloskey, B.D., Freeman, B.D., and Sharma, M.M., PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance, J. Membr. Sci., 2009, vol. 340, pp. 92–108.

    CAS  Article  Google Scholar 

  6. Wilbert, M.C., Pellegrino, J., and Zydney, A., Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes, Desalination, 1998, vol. 115, pp. 15–32.

    CAS  Article  Google Scholar 

  7. Louie, J.S., Pinnau, I., Ciobanu, I., Ishida, K.P., Ng, A., and Reinhard, M., Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes, J. Membr. Sci., 2006, vol. 280, pp. 762–770.

    CAS  Article  Google Scholar 

  8. Kim, I.C. and Lee, K.H., Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes, Desalination, 2006, vol. 192, pp. 246–251.

    CAS  Article  Google Scholar 

  9. Upadhyaya, L., Qian, X., and Wickramasinghe, S.R., Chemical modification of membrane surface—Overview, J. Curr. Opin. Chem. Eng., 2018, vol. 20, pp. 13–18.

    Article  Google Scholar 

  10. She, Q., Wang, R., Fane, A.G., and Tang, C.Y., Membrane fouling in osmotically driven membrane processes: A review, J. Memb. Sci., 2016, vol. 499, pp. 201–233.

    CAS  Article  Google Scholar 

  11. Asadollahi, M., Bastani, D., and Musavi, S.A., Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review, Desalination, 2017, vol. 420, pp. 330– 383.

    CAS  Article  Google Scholar 

  12. Stengaard, F.F., Characteristics and performance of new types of ultrafiltration membranes with chemically modified surfaces, Desalination, 1988, vol. 70, pp. 207–224.

    CAS  Article  Google Scholar 

  13. Shultz, S., Bass, M., Semiat, R., and Freger, V., Modification of polyamide membranes by hydrophobic molecular plugs for improved boron rejection, J. Membr. Sci., 2018, vol. 546, pp. 165–172.

    CAS  Article  Google Scholar 

  14. Hu, Y.T., Lu, K., Yan, F., Shi, Y.L., Yu, P., Yu, S., Li, S., and Gao, C., Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA), J. Membr. Sci., 2016, vol. 501, pp. 209–219.

    CAS  Article  Google Scholar 

  15. Bernstein, R., Belfer, S., and Freger, V., Improving performance of spiral wound RO elements by in situ concentration polarization-enhanced radical graft polymerization, J. Membr. Sci., 2012, vols. 405–406, pp. 79–84.

  16. Dražević, E., Košutić, K., and Freger, V., Permeability and selectivity of reverse osmosis membranes: Correlation to swelling revisited, Water Res., 2014, vol. 49, pp. 444–452.

    Article  Google Scholar 

  17. Williams, M.E., Hestekin, J.A., Smothers, C.N., and Bhattacharyya, D., Separation of organic pollutants by reverse osmosis and nanofiltration membranes: Mathematical models and experimental verification, Ind. Eng. Chem. Res., 1999, vol. 38, pp. 3683–3695.

    CAS  Article  Google Scholar 

  18. Drazevic, E., Bason, S., Kosutic, K., and Freger, V., Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes, Environ. Sci. Technol., 2012, vol. 46, pp. 3377–3383.

    CAS  Article  Google Scholar 

  19. Kiso, Y., Sugiura, Y., Kitao, T., and Nishimura, K., Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes, J. Membr. Sci., 2001, vol. 192, pp. 1–10.

    CAS  Article  Google Scholar 

  20. Hong, S., Kim, I.C., Tak, T., and Kwon, Y.N., Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes, Desalination, 2013, vol. 309, pp. 18–26.

    CAS  Article  Google Scholar 

  21. Khulbe, K.C., Feng, C., and Matsuura, T., The art of surface modification of synthetic polymeric membranes, J. Appl. Polym. Sci., 2010, vol. 115, pp. 855–895.

    CAS  Article  Google Scholar 

  22. Galvin, C.J. and Genzer, J., Applications of surface-grafted macromolecules derived from post-polymerization modification reactions, Prog. Polym. Sci., 2012, vol. 37, pp. 871–906.

    CAS  Article  Google Scholar 

  23. Belfer, S., Purinson, Y., Fainshtein, R., Radchenko, Y., and Kedem, O., Surface modification of commercial composite polyamide reverse osmosis membranes, J. Membr. Sci., 1998, vol. 139, pp. 175–181.

    CAS  Article  Google Scholar 

  24. Freger, V., Gilron, J., and Belfer, S., TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study, J. Membr. Sci., 2002, vol. 209, pp. 283–292.

    CAS  Article  Google Scholar 

  25. Liu, M.H., Chen, Q., Wang, L.Z., Yu, S.C., and Gao, C.J., Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA), Desalination, 2015, vol. 367, pp. 11–20.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Bouraoui.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouraoui, H., Khemakhem, A., Ben Romdhane, M.R. et al. Chemical Modification of Polyamide Thin-Film Composite Membrane by Surface Grafting of a Vinyl-Based Monomer. J. Water Chem. Technol. 44, 108–115 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • thin film polyamide reverse osmosis membranes
  • chemical surface modification
  • grafting
  • vinyl acetate monomers
  • selectivity