Skip to main content

Pharmaceuticals Present in Urban and Hospital Wastewaters in Mexico City


Some emerging pollutants in wastewater sources, urban and hospital, of Mexico City was determined. Solid phase extraction of the selected pollutants from the different matrices and an high performance liquid chromatography analysis technique for their quantification were implemented. Results showed that hospital wastewater contained higher organic matter concentration than urban wastewater. Analgesics and antibiotics were found in all samples. High concentrations of paracetamol, naproxen, sulfamethoxazole and β-estradiol were found in hospital wastewater, ranging from 9 to 27 µg·L−1, showing that, in general, pharmaceutical concentrations in hospital wastewater were higher than those found in urban and in the influent of the wastewater treatment plant, where concentration ranged from 0.18 to 4.79 µg·L−1. In the effluent of wastewater treatment only the antibiotics were found, sulfamethoxazole, trimethroprim and ofloxacin at 0.63; 0.55 and 0.29 µg·L−1. It is the first work reporting the presence of pharmaceutical compounds from a hospital and wastewater urban from Mexico City.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    Lapworth, D.J., Baran, N., Stuart, M.E., and Ward, R.S., Environ. Pollut., 2012, vol. 163, pp. 287–303.

    Article  CAS  Google Scholar 

  2. 2.

    Santos, L.H., Araújo, A.N., Fachini, A., et al., J. Hazard. Mater., 2010, vol. 175, no. 1/3, pp. 45–95.

    Article  CAS  Google Scholar 

  3. 3.

    SanJuan-Reyes, N., Gomez-Oliván, L.M., Galar-Martínez, M., et al., Water Air and Soil Pollut., 2013, no. 1689, pp. 1–14.

    Google Scholar 

  4. 4.

    Igbinosa, E.O., Obi, L.C., Tom, M., and Okoh, A.I., Int. J. Environ. Health Res., 2011, vol. 21, no. 6, pp. 402–414.

    Article  CAS  Google Scholar 

  5. 5.

    Dauhhton, C.G., Sci. Total Environ., 2012, vol. 414, pp. 6–21.

    Article  CAS  Google Scholar 

  6. 6.

    Kasprzyk-Hordern, B., Dinsdale, R.M., and Guwy, A.J., Water Res., 2008, vol. 42, no. 13, pp. 3498–3451.

    Article  CAS  Google Scholar 

  7. 7.

    Pal, A., Yew-Hoong, Gin, K., Yu-Chen, Lin, A., and Reinhard, M., Sci. Total Environ., 2010, vol. 408, pp. 662–669.

    Article  CAS  Google Scholar 

  8. 8.

    Fernández, C., González-Doncel, M., Carbonell, J.P.G., and Tarazona, J.V., Sci. Total Environ., 2010, vol. 408, pp. 543–551.

    Article  CAS  Google Scholar 

  9. 9.

    Paíga, P. and Delerue-Matos, C., Sci. Total Environ., 2016, vol. 569/570, pp. 16–22.

    Article  CAS  Google Scholar 

  10. 10.

    McClellan, K. and Halden, R.U., Water Res., 2010, vol. 44, no. 2, pp. 658–668.

    Article  CAS  Google Scholar 

  11. 11.

    Siemens, J., Huschek, G., Siebe, C., and Kaupenjohann, M., Water Res., 2008, vol. 42, no. 8/9, pp. 2124–2134.

    Article  CAS  Google Scholar 

  12. 12.

    Chávez, A., Maya, C., Gibson, R., and Jiménez, B., Environ. Pollut., 2011, vol. 159, no. 5, pp. 1354–1362.

    Article  CAS  Google Scholar 

  13. 13.

    Standard methods for the examination of water and wastewater, 22th ed., Washington: Amer. Publ. Health Assoc., Amer. Water Works Assoc., Water Environ. Fed., 2012.

  14. 14.

    Kim, Y., Choi, K., Jung, J., et al., Environ. Int., 2007, vol. 33, no. 3, pp. 370–375.

    Article  CAS  Google Scholar 

  15. 15.

    Dalkmann, P., Broszat, M., Siebe, C., et al., Plos One, 2012, vol. 7, no. 9, art. e45397.

    Article  CAS  Google Scholar 

  16. 16.

    Cleuvers, M., Ecotoxicol. and Environ. Safety, 2004, vol. 59, no. 3, pp. 309–315.

    Article  CAS  Google Scholar 

  17. 17.

    Mehinto, A.C., Hill, E.M., and Tyler, C.R., Environ. Sci. and Technol., 2010, vol. 144, no. 6, pp. 2175–2182.

    Google Scholar 

  18. 18.

    Fahrenfeld, N., Ma, Y., O’Brien, M., and Pruden, A., Frontiers in Microbiol., 2013, vol. 4, no. 130, pp. 1–10.

    Google Scholar 

  19. 19.

    Brown, K.D., Kulis, J., Thomson, B., et al., Sci. Total Environ., 2006, vol. 366, pp. 772–783.

    Article  CAS  Google Scholar 

  20. 20.

    Quinn, B., Gagné, F., and Blais, C., Sci. Total Environ., 2008, vol. 389, pp. 306–314.

    Article  CAS  Google Scholar 

  21. 21.

    Filby, A.L., Neuparth, T., Thorpe, K.L., et al., Environ. Health Perspectives, 2007, vol. 115, no. 12, pp. 1704–1710.

    Article  CAS  Google Scholar 

  22. 22.

    Neri-Cruz, N., Gómez-Oliván, L.M., Galar-Martínez, M., et al., Ecotoxicol., 2014, DOI

    Google Scholar 

  23. 23.

    Kim, S.D., Cho, J., Kim, I.S., et al., Water Res., 2007, vol. 41, pp. 1013–1021.

    Article  CAS  Google Scholar 

  24. 24.

    Nakada, N., Kiri, K., Shinohara, H., et al., Environ. and Sci. Technol., 2008, vol. 42, pp. 6347–6353.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Araceli Tomasini.

Additional information

The text was submitted by the authors in English.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calderón, A., Meraz, M. & Tomasini, A. Pharmaceuticals Present in Urban and Hospital Wastewaters in Mexico City. J. Water Chem. Technol. 41, 105–112 (2019).

Download citation


  • emerging pollutants
  • hospital wastewater
  • Mexico City wastewater
  • pharmaceuticals