Skip to main content
Log in

Effect of self-assembly in water-containing colloid systems with dispersed mineral particles on their structural mechanical characteristics

  • From Chaos to Orderliness and Intellect!
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

It was shown that rheological properties of hydrogels (sodium carboxymethyl cellulose, bentonite, water) and the structure of dispersed water-containing composites (hydrophobic fumed silica, graphite, water) are determined by self-assembly processes taking place in the system due to supramolecular interactions between components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Strizhak, P.E., Determinovanyi khaos (Determined Chaos), Kiev: Academperiodika, 2002.

    Google Scholar 

  2. Prigogin, I., Introduction to thermodynamics of irreversible processes, New York: Interscience, 1961.

    Google Scholar 

  3. Nikolis, G. and Prigogin, I., Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations, New York: J. Wiley, 1977.

    Google Scholar 

  4. Klimontovich, Yu.L., Vvedenie v fiziku otkrytykh system (Introduction to Physics of Open Systems), Moscow: Yanus-K, 2002.

    Google Scholar 

  5. Haken. H., Advanced synergetics: instability hierarchies of self-organizing systems and devices, Berlin: Springer-Verlag, 1983.

    Google Scholar 

  6. Malinetskii, G.G., Kompyuter. Issled. i modelirovanie (Computer Research and Modeling), 2013, no. 3, pp. 315–366. http://crm.ics.org.ru/journal/article/2021/

    Google Scholar 

  7. Lebedev-Stepanov, P.V., Vvedeniye v samosborku ansamblei nanochastits (Introduction to Self-Assembly of Ensembles of Nanoparticles), Moscow: NIYau MIFI, 2012.

    Google Scholar 

  8. Roldughin, V.I., Russ. Chem. Rev., 2012, vol. 81, no. 10, pp. 875–917.

    Article  Google Scholar 

  9. Roldughin, V.I., Ibid., 2004, vol. 73, no. 2, pp. 115–145.

    CAS  Google Scholar 

  10. Aranson, I.S., Phys. Usp., 2013, vol. 56, no. 1, pp. 79–92.

    Article  CAS  Google Scholar 

  11. Petropavlovskii, G.A., Gidrofilnye chastichnozameshchennye efiry tsellulozy i ikh modifikatsiya putem khimicheskogo sshivaniya (Hydrofilic Partially Substited Ethers of Cellulose and Their Modification by Way of Chemical Cross Linking), Leningrad, Nauka, 1988.

    Google Scholar 

  12. Lopez, C.G., Rogers, S.E., Colby, R.H., et al., J. Polymer Sci., B., 2015, vol. 53, no. 7, pp. 492–501.

    Article  CAS  Google Scholar 

  13. Tarasevich, Yu.I., Poverkhnostnye yavleniya na dispesnykh materialakh (Surface Phenomena on Disperse Materials), Kiev, Nauk, Dumka, 2011.

    Google Scholar 

  14. Telfman, M.I., Kovalevich, O.V., and Yustratov, V.L., Kolloidnaya khimiya (Colloid Chemistry), CPb: Lan, 2010.

    Google Scholar 

  15. Lipatov, Yu.S., Fiziko-Khimicheskie osnovy napolneniya polimerov (Physicochemical Fundamentals of Filing Polymers), Moscow: Khimiya, 1991.

    Google Scholar 

  16. Lehn, J.-M., Supramolecular chemistry: Concepts and perspectives, New York: J. Wiley, 1995.

    Book  Google Scholar 

  17. Ilyin, S.O., Kulichikhin, V.G., Malkin, A.Y., et al., Colloid. J., 2013, vol. 75, no. 3, pp. 267–273.

    Article  CAS  Google Scholar 

  18. Uriev, N.B., Russ. Chem. Rev., 2004, vol. 73, no. 1, pp. 37–58.

    Article  CAS  Google Scholar 

  19. Forny, L., Saleh, K., Pezron, I., et al., Powder Technol., 2009, vol. 189, no. 2, pp. 263–269.

    Article  CAS  Google Scholar 

  20. Abrosimov, V.K., Efremova, L.S., Ivanov, E.V., and Pankratov, Yu.P., Russ. J. Phys. Chem., A, 2000, vol. 74, no. 5, pp. 752–754.

    Google Scholar 

  21. Bunkin, N.F. and Bunkin, F.V., Phys. Usp., 2016, vol. 59, no. 9, pp. 846–865.

    Article  Google Scholar 

  22. Koroleva, M.Yu., Yurtov, E.V., Russ. Chem. Rev., 2012, vol. 81, no. 1, pp. 21–43.

    Article  CAS  Google Scholar 

  23. Iler, R. Chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica, New York: J. Wiley, 1979.

    Google Scholar 

  24. Zarko, V.I., Belyakova, L.A., Simurov, A.V., and Gul’ko, O.V., Zhurn. Fiz. Khimii, 1995, vol. 69, no. 11, pp. 2021–2025.

    CAS  Google Scholar 

  25. Binks, B.P. and Murakami, R., Nature Mater., 2006, vol. 5, no. 11, pp. 865–869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Dubrovina.

Additional information

Original Russian Text © V.V. Goncharuk, L.V. Dubrovina, E.V. Makarova, 2017, published in Khimiya i Tekhnologiya Vody, 2017, Vol. 39, No. 6, pp. 624–633.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharuk, V.V., Dubrovina, L.V. & Makarova, E.V. Effect of self-assembly in water-containing colloid systems with dispersed mineral particles on their structural mechanical characteristics. J. Water Chem. Technol. 39, 346–350 (2017). https://doi.org/10.3103/S1063455X17060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X17060066

Keywords

Navigation