Advertisement

Journal of Water Chemistry and Technology

, Volume 39, Issue 2, pp 108–115 | Cite as

Adsorption studies of fluoride by activated carbon prepared from Mucuna prurines plant

  • C. Pongener
  • D. Kibami
  • K. S. Rao
  • R. L. Goswamee
  • D. Sinha
Biological Methods of Water Treatment
  • 93 Downloads

Abstract

Activated carbon synthesized from the plant Mucuna prurines have been successfully used to remove fluoride from aqueous solution by adsorption method. Batch method adsorption has been studied and the adsorption was found to be very significant. Almost 96% of fluoride could be removed by adsorption. Adsorption studies of fluoride signify the fact that among the different adsorption model, Langmuir adsorption model seems to be more favorable in the present case. Different parameters like effect ofadsorbent dosage, contact time, pH and initial concentration are studied to understand the adsorption mechanism.

Keywords

activated carbon fluoride adsorption Mucuna prurines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Susheela, A.K., Curr. Sci., 1999, vol. 77, pp. 1250–1256.Google Scholar
  2. 2.
    WHO. Fluorine and Fluorides, Geneva, Switzerland: World Health Organization, Distribution and Sales Service, Environmental Health Criteria no. 36, 1984.Google Scholar
  3. 3.
    Chakrapani, C., Babu, C.S., Vani, K.N.K., and Rao, K.S., J. Chem., 2010, vol. 7, pp. 149–427.Google Scholar
  4. 4.
    Popat, K.R., Anand, P.S., and Dasare, B.D., React. Polymer., 1994, vol. 23, pp. 23–32.CrossRefGoogle Scholar
  5. 5.
    Bulusu, K.R., Sundaresan, B.B., Pathak, B.N., et al., J. Inst. Eng. Environ. Eng. Div., 1979, vol. 60, pp. 1–25.Google Scholar
  6. 6.
    Daifullah, A.A.M., Yakout, S.M., and Elreefy, S.A., J. Hazard. Mater., 2007, vol. 147, pp. 633–643.CrossRefGoogle Scholar
  7. 7.
    Ahmedha, M., Marshall, W.E., and Rao, R.M., Biores. Technol., 2000, vol. 71, pp. 193–112.Google Scholar
  8. 8.
    Hamadi, N.K., Chen, X.D., Farid, M.M., and Lu, M.G.H., J. Chem. Eng., 2001, vol. 84, pp. 95–105.CrossRefGoogle Scholar
  9. 9.
    Toles, C.A., Marshall, W.E., and John, M.M., J. Chem. Technol. Biotechnol., 1998, vol. 72, pp. 255–263.CrossRefGoogle Scholar
  10. 10.
    Wartelle, L.H., Marshall, W.E., Ibid., 2001, vol. 76, pp. 451–455.Google Scholar
  11. 11.
    Kobya, M., Adsorpt. Sci. Technol., 2004, vol. 22, no. 1, pp. 51–64.CrossRefGoogle Scholar
  12. 12.
    Yalem, N. and Sevine, V., Carbon, 2000, vol. 38, pp. 1943–1945.CrossRefGoogle Scholar
  13. 13.
    Akhar, M., Blanger, M.I., Iqbal. S., and Hasany, S.M., J. Agri. Food Chem., 2005, vol. 53, pp. 8655–8662.CrossRefGoogle Scholar
  14. 14.
    Laine, J., Calafat, A., and Labady, M., Carbon, 1989, vol. 27, no. 2, pp. 191–195.CrossRefGoogle Scholar
  15. 15.
    Ahmadpour, A. and Do, D.D., Ibid., 1996, vol. 34, no. 4, pp. 471–479.Google Scholar
  16. 16.
    DiPanfilo, R. and Egiebor, N.O., Fuel Process. Technol. 1996, vol. 46, pp. 157–169.CrossRefGoogle Scholar
  17. 17.
    Usmani, N.H., Ahmed, T.W., Ahmed, S.Z., and Yousufzai, A.H.K., Carbon, 1996, vol. 34, no. 1, pp. 77–82.CrossRefGoogle Scholar
  18. 18.
    Toles, C., Rimmer, S., and Hower, J.C., Ibid., 1996, vol. 34, no. 11, pp. 1419–1426.Google Scholar
  19. 19.
    Tsay, W.T., Chang, C.Y., Wang, S.Y., Chang, C.F., et al., Ibid., 2000, vol. 75, pp. 211–217.Google Scholar
  20. 20.
    Kailappan, R., Gothndapani, L., and Vismanathan, R., Ibid., 2000, vol. 75, pp. 241–243.Google Scholar
  21. 21.
    Tsai, W.T., Chang, C.Y., Wang, S.Y., Chang, C.F., et al., Ibid., 2001, vol. 78, pp. 203–208.Google Scholar
  22. 22.
    Diao, Y., Walawender, W.P., and Fan, L.T., Ibid., 2002, vol. 81, pp. 45–52.Google Scholar
  23. 23.
    Ekpete, O.A. and Horsfall, M., Res. J. Chem. Sci., 2011, vol. 1, no. 3, pp. 10–17.Google Scholar
  24. 24.
    Jiril, M., Noraini, J., Poh, L.S., and Evuti, A.M., J. Teknologi (Sci. and Eng.), 2013, vol. 60, pp. 15–19.Google Scholar
  25. 25.
    Kumar, P.S. and Kirthika, K., J. Eng. Sci. Technol., 2009, vol. 4, pp. 351–363.Google Scholar
  26. 26.
    Zahra, D., Mohammad, A.B., Mojdeh, R., and Mohammad, F., Health Scope., 2013, vol.2, no. 3, pp. 136–44.CrossRefGoogle Scholar
  27. 27.
    Yupeng, G., Jurui, Q., Shaofeng, Y., et al., Mater. Chem. Phys., 2002, vol. 78, pp. 132–137.Google Scholar
  28. 28.
    Tembhurkar, A.R. and Dongre, S., J. Environ. Sci. and Eng., 2006, vol. 48, no. 3, pp. 151–156.Google Scholar
  29. 29.
    Dawodu, F.A., Akpomie, G.K., and Ogbu, I.C., Int. J. Multidiscipl. Sci. Eng., 2012, vol. 3, no. 9, pp. 9–14.Google Scholar
  30. 30.
    Boparai, H.K., Meera, J., and Denis, M.O., J. Hazard. Mater., 2010, doi:10:1016/j.jhazmat.Google Scholar
  31. 31.
    Özacar, M. and Sehgil, I.A., Environ. Geol., 2004, vol. 45, pp. 762–768.CrossRefGoogle Scholar
  32. 32.
    Gerente, C., Lee, V.K.C., Le Clorec, P., and McKay, G., Crit. Rev. Technol., 2007, vol. 37, pp. 41–127.CrossRefGoogle Scholar
  33. 33.
    Mckay, G., Blair, H.S., and Gardener, J.K., J. Appl. Polymer Sci., 1982, vol. 27, pp. 3043–3057.CrossRefGoogle Scholar
  34. 34.
    Goswamee, R.L., Sengupta, P., Bhattacharyya, K.G., and Dutta, D.K., Appl. Clay. Sci., 1998, vol. 13, pp. 21–34.CrossRefGoogle Scholar
  35. 35.
    Allen, S.J., McKay, G., and Porter, J.F., J. Colloid. Interface Sci., 2004, vol. 280, pp. 322–333.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • C. Pongener
    • 1
  • D. Kibami
    • 1
  • K. S. Rao
    • 1
  • R. L. Goswamee
    • 2
  • D. Sinha
    • 1
  1. 1.Department of ChemistryNagaland UniversityKohimaIndia
  2. 2.Material Science DivisionCSIR-NEISTAssamIndia

Personalised recommendations