Journal of Water Chemistry and Technology

, Volume 39, Issue 2, pp 97–102 | Cite as

Quasichemical description of the cell death kinetics of cellular biosensor Spirostomum ambigua for testing the biological activity of aqueous solutions

  • V. V. Goncharuk
  • A. V. Syroeshkin
  • I. A. Zlatskiy
  • E. V. Uspenskaya
  • A. V. Orekhova
  • O. V. Levitskaya
  • V. I. Dobrovolskiy
  • T. V. Pleteneva
Biological Methods of Water Treatment
  • 62 Downloads

Abstract

A kinetic method of biotesting of aqueous solutions using isolated cells of unicellular organism Spirostomum ambigua has been described. A kinetic scheme of interaction of cellular biosensor with ligands based on the Michaelis-Menten mechanism was proposed. It was shown that the death rate of S. ambigua featured the Arrhenius-type dependence on temperature. The activation energy was determined for different toxicants and drugs. For many compounds the activation energy of slow stage of the process of cellular biosensor death linearly correlates with parameter DL50 for the same substances at their oral administration to laboratory animals.

Keywords

biotesting of water biosensor kinetic isotope effect toxicity activation energy Spirostomum ambigua 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ershov, Yu.A. and Pleteneva, T.V., Toxicol. Environ. Chem., 1983, vol. 7, no. 1, pp. 41–46.CrossRefGoogle Scholar
  2. 2.
    Pleteneva, T.V., The First Int. Conf. of Electrochem. and Its Appl., Luxor, 28–30 August 1996, Qena, Egypt: South Valley University, 1996, pp. 245–248.Google Scholar
  3. 3.
    Kovalenko, V.F., Zlatskii, I.A., and Goncharuk, V.V., J. Water Chem. and Technol., 2016, vol. 38, no. 1, pp. 56–61.CrossRefGoogle Scholar
  4. 4.
    Ershov, Yu.A., Pleteneva, T.V., Siniuk, T.F., and Dolgopolova, V.A., Biull. Eksp. Biol. Med., 1999, vol. 127, pp. 717–720.CrossRefGoogle Scholar
  5. 5.
    Applewhite, P.B., Physiol. Behav., 1972, vol. 9, no. 5, pp. 869–871.CrossRefGoogle Scholar
  6. 6.
    Dikstein, S. and Hawkes, R.B., Experientia, 1976, vol. 32, no. 8, pp. 1029–1031.CrossRefGoogle Scholar
  7. 7.
    Nalecz-Jawecki, G., Rudz, B., and Sawicki, J., J. Biomed. Mater. Res., 1997, vol. 35, no. 1, pp. 101–105.CrossRefGoogle Scholar
  8. 8.
    Nalecz-Jawecki, G. and Sawicki, J., Arch. Environ. Contam. Toxicol., 1998, vol. 34, no. 1, pp. 1–5.CrossRefGoogle Scholar
  9. 9.
    Nalecz-Jawecki, G. and Sawicki, J., Chemosphere, 1999, vol. 38, no. 14, pp. 3211–3218.CrossRefGoogle Scholar
  10. 10.
    Hawkes, R.B. and Holberton, D.V., J. Cell. Physiol., 1975, vol. 87, no. 2, pp. 253–263.CrossRefGoogle Scholar
  11. 11.
    Syroeshkin, A.V., Pleteneva, T.V., and Dolgopolova, V.A., Materialy nauch.-prakt. konf. posvyashch. 100-letiyu so dnya rozhd. Prof. S.M. Pavlenko (Proceedings of the Theoretical and Practical Conference Devoted to the Centenary of the Birth of Prof. S. M. Pavlenko), Moscow, 13–14 October 2000, Moscow: Izd.-vo RUDN, 2000, pp. 196–197.Google Scholar
  12. 12.
    Syroeshkin, A.V., Suzdaleva, O.V., Kiskina, L.P., Dolgopolova, V.A., Bykanova, S.N., and Pleteneva, T.V., Vest. RUDN., 2001, no. 3. [Electronic resource], Access mode: http://med.pfu.edu.ru/_new/russian/win/library/ vestnik/v013/03_2001.html.Google Scholar
  13. 13.
    Pleteneva, T.V., Extended Abstract of Doctoral (Chem.) Dissertation, Moscow, 1993.Google Scholar
  14. 14.
    Levitskaya, O.V., Syroeshkin, A.V., and Pleteneva, T.V., Pharm. Chem. J., 2016, vol. 49, no. 11, pp. 779–781.CrossRefGoogle Scholar
  15. 15.
    Syroeshkin, A.V., Bakeeva, L.E., and Cherepanov, D.A., Biochim. Biophys. Acta, 1998, vol. 1409, no. 2, pp. 59–71.CrossRefGoogle Scholar
  16. 16.
    Goncharuk, V.V., Lapshin, V.B., Burdeinaya, T.N., et al., J. Water Chem. and Technol., 2011, vol. 33, no. 1, pp. 8–13.CrossRefGoogle Scholar
  17. 17.
    Syroeshkin, A.V., Titorovich (Levitskaya), O.V., Pleteneva, T.V., and Burdeinaya, T.N., Mikroelementy v meditsine, 2015, vol. 3, no. 16, pp. 29–37.Google Scholar
  18. 18.
    Hang, M., Huynh, V., and Meyer, T.J., PNAS, 2004, vol. 101, no. 36, pp. 13138–13141.CrossRefGoogle Scholar
  19. 19.
    Goncharuk, V.V., Syroeshkin, A.V., Kovalenko, V.F., and Zlatskiy, I.A., J. Water Chem. and Technol., 2016, vol. 38, no. 6, pp. 349–352.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Goncharuk
    • 1
  • A. V. Syroeshkin
    • 2
  • I. A. Zlatskiy
    • 1
    • 2
  • E. V. Uspenskaya
    • 2
  • A. V. Orekhova
    • 2
  • O. V. Levitskaya
    • 2
  • V. I. Dobrovolskiy
    • 3
  • T. V. Pleteneva
    • 2
  1. 1.Dumanskii Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.All-Russia Research Institute of Physicotechnical and Radio Engineering MeasurementsMoscowRussia

Personalised recommendations