Journal of Water Chemistry and Technology

, Volume 39, Issue 2, pp 68–72 | Cite as

Application of luminescence for estimating the efficiency of photocatalysts

Physical Chemistry of Water Treatment Processes
  • 49 Downloads

Abstract

Capabilities of new approaches in luminescence applications for estimating the quality of photocatalysts have been studied. Since photoluminescent processes are chain ones and initiated by free radicals, luminol and other indicators can be used to determine the efficiency of photocatalysts: the higher is the intensity of luminescent glow, the more is the number of free radicals in the system and the higher is the efficiency of photocatalyst. In some cases, by using special techniques it is possible to study the accumulation of superoxide radicals, hydroxyl radicals, and hydrogen peroxide in the system.

Keywords

luminescence free radicals photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharuk, V.V., Science about water, Kiev: Akademperiodyka, 2014.Google Scholar
  2. 2.
    Goncharuk, V.V., Vakulenko, V.F., Sitnichenko, T.N., et al., J. Water Chem. and Technol., 2013, vol. 35, pp. 62–70.CrossRefGoogle Scholar
  3. 3.
    Prihod’ko, R.V. and Soboleva, N.M., J. Chemistry, 2013, Article ID 168701, pp. 1–8.Google Scholar
  4. 4.
    Solozhenko, E.G., Soboleva, N.M., and Goncharuk, V.V., J. Water Chem. and Technol., 2004, vol. 26, pp. 1–16.Google Scholar
  5. 5.
    Kolodziejczak-Radzimska, A. and Jesionowski, T., Materials, 2014, vol. 7, pp. 2833–2881.CrossRefGoogle Scholar
  6. 6.
    Yu, R., Xue, N., Huo, S., et al., Royal Soc. Chem. Adv., 2015, vol. 5, pp. 63502–63512.Google Scholar
  7. 7.
    Babko, A.K., Dubovenko, L.I., and Lukovskaya, N.M., Khemilyuminestsentnyi analiz (Chemiluminescence Analysis), Kiev: Tekhnika, 1966.Google Scholar
  8. 8.
    Chemiluminescence in Analytical Chemistry, Garsia-Campana, A.M. and Baeyens, W.R., Eds., New York, Basel: Marcel Dekker, 2001.Google Scholar
  9. 9.
    Zui, O.V. and Goncharuk, V.V., Geterogenno-khemilyuminestsentnyi analiz v opredelenii nanogrammovykh kolichestv anionov (Heterogeneous-Luminescence Analysis in Determining Nanogram Amounts of Anions), Kiev: Nauk. Dumka, 2013.Google Scholar
  10. 10.
    Lukovskaya, N.M., Razvitie analiticheskoi khimii na Ukraine (Advancement of Analytical Chemistry in Ukraine), Kiev: Nauk. Dumka, 1982.Google Scholar
  11. 11.
    Goncharuk, V.V., Vakulenko, V.F., Shvadchina, Yu.O., et al., J. Water Chem. and Technol., 2008, vol. 30, pp. 335–343.CrossRefGoogle Scholar
  12. 12.
    Nosaka, Y., Yamashita, Y., and Fukuyama, H., J. Phys. Chem., B, 1997, vol. 101, pp. 5822–5827.CrossRefGoogle Scholar
  13. 13.
    Ishibashi, K., Nosaka, Y., Hashimoto, K., and Fujishima, A., Ibid., 1998, vol. 102, pp. 2117–2120.Google Scholar
  14. 14.
    Hirakawa, T., Nakaoka, Y., Nishino, J., and Nosaka, Y., Ibid. 1999, vol. 103, pp. 4399–4403.Google Scholar
  15. 15.
    Hirakawa, T. and Nosaka, Y., Langmuir, 2002, vol. 18, pp. 3247–3254.CrossRefGoogle Scholar
  16. 16.
    Asahi, R., Morikawa, T., Ohwaki, T., et al., Science, 2001, vol. 293, pp. 269–271.CrossRefGoogle Scholar
  17. 17.
    Umebayashi, T., Yamaki, T., Ito, H., and Asahi, K., App. Phys. Lett., 2002, vol. 81, pp. 454–456.CrossRefGoogle Scholar
  18. 18.
    Murakami, Y., Kasahara, B., and Nosaka, Y., Chem. Lett., 2007, vol. 36, pp. 330–331.CrossRefGoogle Scholar
  19. 19.
    Xiaobo, C. and Samuel, S.M., Chem. Rev., 2007, vol. 107, pp. 2891–2959.CrossRefGoogle Scholar
  20. 20.
    Irie, H., Kamiya, K., Shibanuma, T., et al., J. Phys. Chem., C, 2009, vol. 113, pp. 10761–10766.CrossRefGoogle Scholar
  21. 21.
    Yu, H., Irie, H., Shimodaira, Y., et al., Ibid., 2010, vol. 114, pp. 16481–16487.Google Scholar
  22. 22.
    Nishikawa, M., Hiura, S., Mitani, Y., and Nosaka, Y., Transactions on GIGAKU, 2012, vol. 1, pp. 1–6.CrossRefGoogle Scholar
  23. 23.
    Hirakawa, T. and Nosaka, Y., J. Phys. Chem., C, 2008, vol. 112, pp. 15818–15823.CrossRefGoogle Scholar
  24. 24.
    Liao, H. and Reitberger, T., Catalysts, 2013, vol. 3, pp. 418–443.CrossRefGoogle Scholar
  25. 25.
    Min, L., Chen, X., and Wu, X.-Z., Luminescence, 2010, vol. 25, pp. 355–359.CrossRefGoogle Scholar
  26. 26.
    Su, G., Wei, Y., and Guo, M., Amer. J. Anal. Chem., 2011, vol. 2, pp. 879–884.CrossRefGoogle Scholar
  27. 27.
    Tahirovic, A., Copra, A., Omanovic-Miklicanin, E. and Kalcher, K., Talanta, 2007, vol. 72, pp. 1378–1385.CrossRefGoogle Scholar
  28. 28.
    Silva, R.A., Montes, R.H., Richter, E.M., and Munoz, R.A., Food Chem., 2012, vol. 133, pp. 200–204.CrossRefGoogle Scholar
  29. 29.
    Mark, G., Tauber, A., Laupert, R., et al., Ultrasonic Sonochem., 1998, vol. 5, pp. 41–52.CrossRefGoogle Scholar
  30. 30.
    Foley, S., Rotureau, P., Pin, S., et al., Angew. Chem. Int. Ed., 2005, vol. 44, pp. 110–112.CrossRefGoogle Scholar
  31. 31.
    Elovitz, S.M. and Gunten, U.V., Ozone Sci. Eng., 1999, vol. 21, pp. 239–260.CrossRefGoogle Scholar
  32. 32.
    Yamaguchi, S., Kishikawa, N., Ohyama, K., et al., Anal. Chim. Acta, 2010, vol. 665, pp. 74–78.CrossRefGoogle Scholar
  33. 33.
    Wang, L., Liu, S., Zheng, Z., et al., Anal. Methods, 2015, vol. 7, pp. 1535–1542.CrossRefGoogle Scholar
  34. 34.
    Nam, Y., Kim, B.S., and Shin, I., Chem. Commun., 2016, vol. 52, pp. 1128–1130.CrossRefGoogle Scholar
  35. 35.
    Felix, E.P., Filho, J.P., Garcia, G., and Cardoso, A.A., Microchem. J., 2011, vol. 99, pp. 530–534.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Goncharuk
    • 1
  • O. V. Zuy
    • 1
  • R. V. Prihod’ko
    • 1
  1. 1.Dumanskii Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations