The use of redox potential in water treatment processes

Abstract

The use of redox potential as a control parameter of wastewater treatment processes for characterizing the natural water condition and estimating the antioxidant properties of drinking water has been investigated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Voda pytna. Normatyvni dokumenty (Drinking Water. Regulatory Documents), Lviv: NTTs Leonormstandart, vol. 2, 2001.

  2. 2.

    Nikanorov, A.M., Gidrokhimiya (Hydrochemistry), Leningrad: Gidrometeoizdat, 1989.

    Google Scholar 

  3. 3.

    Williams, J.B., Williams, L., Baldwin, N., et al., Proc. Nat. Conf. on Environ. Sci. and Technol., (Greensboro, N.C., September 8–10, 2002), Columbus (Ohio): Richland Battelle, 2003.

    Google Scholar 

  4. 4.

    Tremblay, C.V., Beaubien, A., Charles, P.N., and James, A., Water Sci. and Technol., 1998, vol. 38, no. 6, pp. 121–128.

    Article  CAS  Google Scholar 

  5. 5.

    Wregglessworth, D., Metal Finish, 2004, vol. 102, no. 5, pp. 6–7.

    Article  Google Scholar 

  6. 6.

    Gottard, W., Patent Application no. 19960275 (Germany), IPC7 G 01 N 27/416, Publ. June 21, 2001.

  7. 7.

    Nakamura, Sh., Tarasuka, K., and Okuda, A., Patent no. 6235188 (USA), IPC7 C 02 F 1/461, Publ. May 22, 2001.

  8. 8.

    Khan, S., Patent no. 6340431 (USA), IPC7 B 01 D 17/12, Publ. January 22, 2001.

  9. 9.

    Blauwitz, U., Patent Application no. 19808412 (Germany), IPC6 G 01 N 33/18, Publ. September 2, 1999.

  10. 10.

    Navarro, P., Patent no. 6657546 (USA), IPC7 G 08 B 21/00, Publ. December 2, 2003.

  11. 11.

    Li, X., Qi, J., and Wang, Y., J. Harbin Univ. Giv. Eng. and Archit., 2002, vol. 35, no. 3, pp. 68–70.

    CAS  Google Scholar 

  12. 12.

    Oxidation-Reduction Potential (ORP)/PEDOX, Application Bulletin, Myron L. Company, 2007.

  13. 13.

    Suslow, T.V., Introduction to ORP as the Standard of Postharvest Water Disinfection Monitoring, US Davis Vegetable Research and Information Center, http://vric.ucdavis.edu/veginfo/foodsafety/orp.pdf.

  14. 14.

    Bergendahl, J.A. and Stevens, L., Environ. Progress, 2005, vol. 24, no. 2, pp. 214–222.

    Article  CAS  Google Scholar 

  15. 15.

    Shakhmetova, S.G., Bashkir. Khim. Zhurn., 2007, vol. 14, no. 2, pp. 118–120.

    Google Scholar 

  16. 16.

    Misier, M.O., Eau; ind., nuisances, 2006, no. 288, pp. 57–58.

  17. 17.

    Bongards, M., Patent Application no. 19702951 (Germany), IPC6 C 02 F 3/30, Publ. July 30, 1998.

  18. 18.

    Bauman, P., Hansen, J., and Richert, J., KA—Abwasser, Abfal., 2005 vol. 52, no. 12, pp. 1352–1358.

    Google Scholar 

  19. 19.

    Fuerhacker, M., Bauer, H., Ellinger, R., et al., Chemosphere, 2001, vol. 44, no. 5, pp. 1213–1221.

    Article  CAS  Google Scholar 

  20. 20.

    Gao, D.W., Peng, Y.Z., Liang, H., et al, J. Environ. Sci. and Health, 2003, vol. 38, no. 12, pp. 2933–2942.

    Article  Google Scholar 

  21. 21.

    Chen, K.C., Chen, C.Y., Peng, J.W., et al., Water Res., 2002, vol. 36, no. 1, pp. 230–238.

    Article  CAS  Google Scholar 

  22. 22.

    Teble, F. and Keiser, D., Umweltpraxis, 2002, vol. 2, no. 4, pp. 35–36.

    Google Scholar 

  23. 23.

    Reggi, R., World Leather, 1996, vol. 9, no. 7, pp. 47–48.

    Google Scholar 

  24. 24.

    Dmitrenko, G.N. and Ereshko, T.V., Khimiya i Tekhnologiya Vody, 2005, vol. 27, no. 4, pp. 392–398.

    Google Scholar 

  25. 25.

    Dmitrenko, G.N., ibid., 2001, vol. 23, no. 3, pp. 329–337.

    Google Scholar 

  26. 26.

    Imaoki, T., Hirochi, M., Sugiyama, I., et al., Patent Application no. 1038839 EPO, IPC7 C 01 F 1/70, Publ. September 27, 2000.

  27. 27.

    Gerardi, M.H., Oxidation-Reduction Potential and Wastewater Treatment, New England Interstate Water Pollution Control Commission, Publication and Resources, Interstate Water Report, 2007, http://www.neiwpcc.org/iwr/reduc-tionpotential.asp.

  28. 28.

    Meierling, L., Wasserwird-Wassertechn., 2003, no. 5, pp. 36–39.

  29. 29.

    Aizenshtadt, A.M., Bogdanov, M.V., Bogolitsin, K.G., and Abrosimova, A.A., Izv. Vuzov. Lesn. Zhurn., 2006, no. 3, pp. 91–97.

  30. 30.

    Makar’, A.V., Elektron. Obrabotka Materialov, 2003, no. 2, pp. 80–83, 101.

  31. 31.

    Meß—und Analysegeräte zum Einsatz in der Wasserverschmutzungskontrolle zunehment gefragt, Galvanotechnik, 2000, vol. 91, no. 5, p. 1430.

  32. 32.

    Neu bei Dr. Lange: Die ECM—Familie, ibid., 1997, vol. 88, no. 6, p. 2052.

  33. 33.

    Redox-Industrieregler, ibid., 1999, vol. 90, no. 3, pp. 734–735.

  34. 34.

    Starkes Wachstum durch neu Leitfähigkeitssensoren, ibid., 2003, vol. 94, no. 2, pp. 402–403.

  35. 35.

    Datenlogger für Kontrollmessungen, Chem.-Ing.-Technol., 1999, vol. 71, no. 12, pp. 1350.

  36. 36.

    Analesenmesstechnik für die Wasserraufbereitung, Galvanotechnik, 2005, vol. 96, no. 4, pp. 891.

  37. 37.

    New patented four-beam turbidity sensor, Int. Environ. Technol., 2001, vol. 11, no. 6, pp. 16.

  38. 38.

    Oelbner, W., Hermann, S., Schwarz, J., and Koden, H., Chem.-Ing.-Techn., 2000, vol. 72, no. 1/2, pp. 98–101.

    Google Scholar 

  39. 39.

    Schindler, W., Incom’98, Düsseldorf (Düsseldorf, 1998), 1998.

  40. 40.

    GOST (State Standard) 2874-82: Woda pit’evaya. Gigienicheskie trebovaniya i kontrol’ za kachestvom (Drinking Water. Hygienic Regulations and Quality Control), Put into effect on January 1, 1984.

  41. 41.

    Prilutskii, V.I. and Bakhir, V.M., Elektrokhimicheski aktivirovannaya voda: anomal’nye svoistva, mekhanizm biologicheskogo deistviya (Electrochemically Activated Water: Anomalous Properties, the Mechanism of Biological Activity), Moscow, 1997.

  42. 42.

    Dvornikov, V.M., Tekhnologiya sokhraneniya metastabil’nogo sostoyaniya nizkomineralizovannoi aktivirovannoi vody (Technology of Maintaining the Metastable Condition of Low Mineralized Water), http://www.gepatitu-net.ru/nauch_obos.htm.

  43. 43.

    Kim, M.J. and Kim, H.K., Life Sci., 2006, no. 79, pp. 2288–2292.

  44. 44.

    Lee, K.J., Park, S.K., Kim, J.W., et al., J. Int. Soc. Life Inform. Sci., 2004, vol. 22, no. 2, pp. 302–305.

    Google Scholar 

  45. 45.

    Yasunori, S., Shizuo, K., Akiko, A., et al., Biochem. and Biophys. Res. Commun., 2008, vol. 375, no. 3, pp. 346–350.

    Article  Google Scholar 

  46. 46.

    Kokichi, H., Dongxu, S., Richard, L., et al., Biophysical Chemistry, 2004, no. 107, pp. 71–82.

  47. 47.

    Hanaoka, K., J. of Applied Electrochemistry, 2001, no. 31, pp. 1307–1313.

  48. 48.

    Ikuroh, O., Masahiro, I., Kumiko, T., et al., Nature Medicine, 2007, no. 13, pp. 688–694.

  49. 49.

    Huang, K, Yan, C, Lee, K., et al., Kidney Int., 2003, no. 64, pp. 704–714.

  50. 50.

    Yuping, L., Tomohiro, N., Kiichiro, T., et al., Cytotechnol., 2002, no. 40, pp. 139–149.

  51. 51.

    Dan, J., Sung, H.R., Hyun, W.K., et al., Biosci. Biotechnol. Biochem., 2006, vol. 70, no. 1, pp. 31–37.

    Article  Google Scholar 

  52. 52.

    Gadek, Z., Li, Y, and Shirahata, S., Animal Cell Technol.: Basic and Appl. Aspects, 2006, no. 3, pp. 377–385.

  53. 53.

    Kajiyama, S., Hasegawa, G., Asano, M., et al., Nutrition Res., 2008, no. 28, pp. 137–143.

  54. 54.

    Leonov, B.I., Prilutskii, V.I., and Bakhir, V.M., Fiziko-khimicheskie aspekty biologicheskogo deistviya elektrokhimicheski aktivirovannoi vody (Physico-Chemical Aspects of the Biological Effect of Electrochemically Activated Water), Moscow: VNIIIMT, 1999.

    Google Scholar 

  55. 55.

    Chetkovic, V.S., Purenovic, J.M., and Jovicevic, J.N., Appl. Clay Sci., 2008, no. 38, pp. 268–278.

  56. 56.

    Ryuhei, N., Kiichiro, T., Yoshinori, K., et al., Cytotechnol., 2005, no. 47, pp. 97–105.

  57. 57.

    Yanagira, T., Sato, B., and Syudo, T., Patent no. 2004101402 A (Russia), IPC7 C02F 1/70, 1/30, Publ. in byul. no. 13, May 10, 2005.

  58. 58.

    Petrushanko, I.Yu. and Lobyshev, V.I., Biofizika, 2001, vol. 46, no. 3, pp. 389–401.

    CAS  Google Scholar 

  59. 59.

    Petrushanko, I.Yu. and Lobyshev, V.I., ibid., 2004, vol. 49, no. 1, pp. 22–31.

    CAS  Google Scholar 

  60. 60.

    Dobosh, D., Elektrokhimicheskie konstanty (Electrochemical Constants), Moscow: Mir, 1980.

    Google Scholar 

  61. 61.

    Piskarev, I.M., Ushkanov, V.A., Likhachev, P.P., and Myslivets, T.S., Okislitel’no-vosstanovitel’nyi potentsial vody, nasyshchennoi vodorodom (Oxidation-Reduction Potential of Hydrogenated Water), http://zhurnal.ape.relarn.ru/articles/2007/023.pdf.

  62. 62.

    Shirahata, S., Kabayama, S., Nakano, M., et al., Biochemical and Biophysical Research Communications, 1997, no. 234, pp. 269–274.

  63. 63.

    Bagley, D., Patent no. 20060273030 (USA), IPC A 23 J 7/00, A 23 J 007/00, Publ. December 7, 2006.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Goncharuk.

Additional information

Original Russian Text © V.V. Goncharuk, V.A. Bagrii, L.A. Mel’nik, R.D. Chebotareva, S.Yu. Bashtan, 2010, published in Khimiya i Tekhnologiya Vody, 2010, Vol. 32, No. 1, pp. 3–19.

About this article

Cite this article

Goncharuk, V.V., Bagrii, V.A., Mel’nik, L.A. et al. The use of redox potential in water treatment processes. J. Water Chem. Technol. 32, 1–9 (2010). https://doi.org/10.3103/S1063455X10010017

Download citation

Keywords

  • Water Treatment Process
  • Normal Hydrogen Electrode
  • Carrot Juice
  • Subterranean Water
  • Natural Water Condition