Advertisement

Journal of Water Chemistry and Technology

, Volume 32, Issue 1, pp 1–9 | Cite as

The use of redox potential in water treatment processes

  • V. V. Goncharuk
  • V. A. Bagrii
  • L. A. Mel’nik
  • R. D. Chebotareva
  • S. Yu. Bashtan
Physical Chemistry of Water Treatment Processes

Abstract

The use of redox potential as a control parameter of wastewater treatment processes for characterizing the natural water condition and estimating the antioxidant properties of drinking water has been investigated.

Keywords

Water Treatment Process Normal Hydrogen Electrode Carrot Juice Subterranean Water Natural Water Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voda pytna. Normatyvni dokumenty (Drinking Water. Regulatory Documents), Lviv: NTTs Leonormstandart, vol. 2, 2001.Google Scholar
  2. 2.
    Nikanorov, A.M., Gidrokhimiya (Hydrochemistry), Leningrad: Gidrometeoizdat, 1989.Google Scholar
  3. 3.
    Williams, J.B., Williams, L., Baldwin, N., et al., Proc. Nat. Conf. on Environ. Sci. and Technol., (Greensboro, N.C., September 8–10, 2002), Columbus (Ohio): Richland Battelle, 2003.Google Scholar
  4. 4.
    Tremblay, C.V., Beaubien, A., Charles, P.N., and James, A., Water Sci. and Technol., 1998, vol. 38, no. 6, pp. 121–128.CrossRefGoogle Scholar
  5. 5.
    Wregglessworth, D., Metal Finish, 2004, vol. 102, no. 5, pp. 6–7.CrossRefGoogle Scholar
  6. 6.
    Gottard, W., Patent Application no. 19960275 (Germany), IPC7 G 01 N 27/416, Publ. June 21, 2001.Google Scholar
  7. 7.
    Nakamura, Sh., Tarasuka, K., and Okuda, A., Patent no. 6235188 (USA), IPC7 C 02 F 1/461, Publ. May 22, 2001.Google Scholar
  8. 8.
    Khan, S., Patent no. 6340431 (USA), IPC7 B 01 D 17/12, Publ. January 22, 2001.Google Scholar
  9. 9.
    Blauwitz, U., Patent Application no. 19808412 (Germany), IPC6 G 01 N 33/18, Publ. September 2, 1999.Google Scholar
  10. 10.
    Navarro, P., Patent no. 6657546 (USA), IPC7 G 08 B 21/00, Publ. December 2, 2003.Google Scholar
  11. 11.
    Li, X., Qi, J., and Wang, Y., J. Harbin Univ. Giv. Eng. and Archit., 2002, vol. 35, no. 3, pp. 68–70.Google Scholar
  12. 12.
    Oxidation-Reduction Potential (ORP)/PEDOX, Application Bulletin, Myron L. Company, 2007.Google Scholar
  13. 13.
    Suslow, T.V., Introduction to ORP as the Standard of Postharvest Water Disinfection Monitoring, US Davis Vegetable Research and Information Center, http://vric.ucdavis.edu/veginfo/foodsafety/orp.pdf.
  14. 14.
    Bergendahl, J.A. and Stevens, L., Environ. Progress, 2005, vol. 24, no. 2, pp. 214–222.CrossRefGoogle Scholar
  15. 15.
    Shakhmetova, S.G., Bashkir. Khim. Zhurn., 2007, vol. 14, no. 2, pp. 118–120.Google Scholar
  16. 16.
    Misier, M.O., Eau; ind., nuisances, 2006, no. 288, pp. 57–58.Google Scholar
  17. 17.
    Bongards, M., Patent Application no. 19702951 (Germany), IPC6 C 02 F 3/30, Publ. July 30, 1998.Google Scholar
  18. 18.
    Bauman, P., Hansen, J., and Richert, J., KA—Abwasser, Abfal., 2005 vol. 52, no. 12, pp. 1352–1358.Google Scholar
  19. 19.
    Fuerhacker, M., Bauer, H., Ellinger, R., et al., Chemosphere, 2001, vol. 44, no. 5, pp. 1213–1221.CrossRefGoogle Scholar
  20. 20.
    Gao, D.W., Peng, Y.Z., Liang, H., et al, J. Environ. Sci. and Health, 2003, vol. 38, no. 12, pp. 2933–2942.CrossRefGoogle Scholar
  21. 21.
    Chen, K.C., Chen, C.Y., Peng, J.W., et al., Water Res., 2002, vol. 36, no. 1, pp. 230–238.CrossRefGoogle Scholar
  22. 22.
    Teble, F. and Keiser, D., Umweltpraxis, 2002, vol. 2, no. 4, pp. 35–36.Google Scholar
  23. 23.
    Reggi, R., World Leather, 1996, vol. 9, no. 7, pp. 47–48.Google Scholar
  24. 24.
    Dmitrenko, G.N. and Ereshko, T.V., Khimiya i Tekhnologiya Vody, 2005, vol. 27, no. 4, pp. 392–398.Google Scholar
  25. 25.
    Dmitrenko, G.N., ibid., 2001, vol. 23, no. 3, pp. 329–337.Google Scholar
  26. 26.
    Imaoki, T., Hirochi, M., Sugiyama, I., et al., Patent Application no. 1038839 EPO, IPC7 C 01 F 1/70, Publ. September 27, 2000.Google Scholar
  27. 27.
    Gerardi, M.H., Oxidation-Reduction Potential and Wastewater Treatment, New England Interstate Water Pollution Control Commission, Publication and Resources, Interstate Water Report, 2007, http://www.neiwpcc.org/iwr/reduc-tionpotential.asp.
  28. 28.
    Meierling, L., Wasserwird-Wassertechn., 2003, no. 5, pp. 36–39.Google Scholar
  29. 29.
    Aizenshtadt, A.M., Bogdanov, M.V., Bogolitsin, K.G., and Abrosimova, A.A., Izv. Vuzov. Lesn. Zhurn., 2006, no. 3, pp. 91–97.Google Scholar
  30. 30.
    Makar’, A.V., Elektron. Obrabotka Materialov, 2003, no. 2, pp. 80–83, 101.Google Scholar
  31. 31.
    Meß—und Analysegeräte zum Einsatz in der Wasserverschmutzungskontrolle zunehment gefragt, Galvanotechnik, 2000, vol. 91, no. 5, p. 1430.Google Scholar
  32. 32.
    Neu bei Dr. Lange: Die ECM—Familie, ibid., 1997, vol. 88, no. 6, p. 2052.Google Scholar
  33. 33.
    Redox-Industrieregler, ibid., 1999, vol. 90, no. 3, pp. 734–735.Google Scholar
  34. 34.
    Starkes Wachstum durch neu Leitfähigkeitssensoren, ibid., 2003, vol. 94, no. 2, pp. 402–403.Google Scholar
  35. 35.
    Datenlogger für Kontrollmessungen, Chem.-Ing.-Technol., 1999, vol. 71, no. 12, pp. 1350.Google Scholar
  36. 36.
    Analesenmesstechnik für die Wasserraufbereitung, Galvanotechnik, 2005, vol. 96, no. 4, pp. 891.Google Scholar
  37. 37.
    New patented four-beam turbidity sensor, Int. Environ. Technol., 2001, vol. 11, no. 6, pp. 16.Google Scholar
  38. 38.
    Oelbner, W., Hermann, S., Schwarz, J., and Koden, H., Chem.-Ing.-Techn., 2000, vol. 72, no. 1/2, pp. 98–101.Google Scholar
  39. 39.
    Schindler, W., Incom’98, Düsseldorf (Düsseldorf, 1998), 1998.Google Scholar
  40. 40.
    GOST (State Standard) 2874-82: Woda pit’evaya. Gigienicheskie trebovaniya i kontrol’ za kachestvom (Drinking Water. Hygienic Regulations and Quality Control), Put into effect on January 1, 1984.Google Scholar
  41. 41.
    Prilutskii, V.I. and Bakhir, V.M., Elektrokhimicheski aktivirovannaya voda: anomal’nye svoistva, mekhanizm biologicheskogo deistviya (Electrochemically Activated Water: Anomalous Properties, the Mechanism of Biological Activity), Moscow, 1997.Google Scholar
  42. 42.
    Dvornikov, V.M., Tekhnologiya sokhraneniya metastabil’nogo sostoyaniya nizkomineralizovannoi aktivirovannoi vody (Technology of Maintaining the Metastable Condition of Low Mineralized Water), http://www.gepatitu-net.ru/nauch_obos.htm.
  43. 43.
    Kim, M.J. and Kim, H.K., Life Sci., 2006, no. 79, pp. 2288–2292.Google Scholar
  44. 44.
    Lee, K.J., Park, S.K., Kim, J.W., et al., J. Int. Soc. Life Inform. Sci., 2004, vol. 22, no. 2, pp. 302–305.Google Scholar
  45. 45.
    Yasunori, S., Shizuo, K., Akiko, A., et al., Biochem. and Biophys. Res. Commun., 2008, vol. 375, no. 3, pp. 346–350.CrossRefGoogle Scholar
  46. 46.
    Kokichi, H., Dongxu, S., Richard, L., et al., Biophysical Chemistry, 2004, no. 107, pp. 71–82.Google Scholar
  47. 47.
    Hanaoka, K., J. of Applied Electrochemistry, 2001, no. 31, pp. 1307–1313.Google Scholar
  48. 48.
    Ikuroh, O., Masahiro, I., Kumiko, T., et al., Nature Medicine, 2007, no. 13, pp. 688–694.Google Scholar
  49. 49.
    Huang, K, Yan, C, Lee, K., et al., Kidney Int., 2003, no. 64, pp. 704–714.Google Scholar
  50. 50.
    Yuping, L., Tomohiro, N., Kiichiro, T., et al., Cytotechnol., 2002, no. 40, pp. 139–149.Google Scholar
  51. 51.
    Dan, J., Sung, H.R., Hyun, W.K., et al., Biosci. Biotechnol. Biochem., 2006, vol. 70, no. 1, pp. 31–37.CrossRefGoogle Scholar
  52. 52.
    Gadek, Z., Li, Y, and Shirahata, S., Animal Cell Technol.: Basic and Appl. Aspects, 2006, no. 3, pp. 377–385.Google Scholar
  53. 53.
    Kajiyama, S., Hasegawa, G., Asano, M., et al., Nutrition Res., 2008, no. 28, pp. 137–143.Google Scholar
  54. 54.
    Leonov, B.I., Prilutskii, V.I., and Bakhir, V.M., Fiziko-khimicheskie aspekty biologicheskogo deistviya elektrokhimicheski aktivirovannoi vody (Physico-Chemical Aspects of the Biological Effect of Electrochemically Activated Water), Moscow: VNIIIMT, 1999.Google Scholar
  55. 55.
    Chetkovic, V.S., Purenovic, J.M., and Jovicevic, J.N., Appl. Clay Sci., 2008, no. 38, pp. 268–278.Google Scholar
  56. 56.
    Ryuhei, N., Kiichiro, T., Yoshinori, K., et al., Cytotechnol., 2005, no. 47, pp. 97–105.Google Scholar
  57. 57.
    Yanagira, T., Sato, B., and Syudo, T., Patent no. 2004101402 A (Russia), IPC7 C02F 1/70, 1/30, Publ. in byul. no. 13, May 10, 2005.Google Scholar
  58. 58.
    Petrushanko, I.Yu. and Lobyshev, V.I., Biofizika, 2001, vol. 46, no. 3, pp. 389–401.Google Scholar
  59. 59.
    Petrushanko, I.Yu. and Lobyshev, V.I., ibid., 2004, vol. 49, no. 1, pp. 22–31.Google Scholar
  60. 60.
    Dobosh, D., Elektrokhimicheskie konstanty (Electrochemical Constants), Moscow: Mir, 1980.Google Scholar
  61. 61.
    Piskarev, I.M., Ushkanov, V.A., Likhachev, P.P., and Myslivets, T.S., Okislitel’no-vosstanovitel’nyi potentsial vody, nasyshchennoi vodorodom (Oxidation-Reduction Potential of Hydrogenated Water), http://zhurnal.ape.relarn.ru/articles/2007/023.pdf.
  62. 62.
    Shirahata, S., Kabayama, S., Nakano, M., et al., Biochemical and Biophysical Research Communications, 1997, no. 234, pp. 269–274.Google Scholar
  63. 63.
    Bagley, D., Patent no. 20060273030 (USA), IPC A 23 J 7/00, A 23 J 007/00, Publ. December 7, 2006.Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • V. V. Goncharuk
    • 1
  • V. A. Bagrii
    • 1
  • L. A. Mel’nik
    • 1
  • R. D. Chebotareva
    • 1
  • S. Yu. Bashtan
    • 1
  1. 1.Dumanskii Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations