Skip to main content
Log in

Attitude stabilization of a rigid body in conditions of decreasing dissipation

  • Mechanics
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The paper presents the problem of triaxial stabilization of the angular position of a rigid body. The possibility of implementing a control system in which dissipative torque tends to zero over time and the restoring torque is the only remaining control torque is considered. The case of vanishing damping considered in this study is known as the most complicated one in the problem of stability analysis of mechanical systems with a nonstationary parameter at the vector of dissipative forces. The lemma of the estimate from below for the norm of the restoring torque in the neighborhood of the stabilized motion of a rigid body and two theorems on asymptotic stability of the stabilized motion of a body are proven. It is shown that the sufficient conditions of asymptotic stability found in the theorems are close to the necessary ones. The results of numerical simulation illustrating the conclusions obtained in this study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Sarychev, Problems of Artificial Satellites Orientation (VINITI, Moscow, 1978), in Ser.: Advances in Science and Technology. Space Research, Vol. 11 [in Russian].

  2. N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov’s Direct Method (Springer-Verlag, New York, 1977).

    Book  MATH  Google Scholar 

  3. L. Hatvani, “On partial asymptotic stability and instability. III. Energy-like Ljapunov functions,” Acta Sci. Math. 49, 157–167 (1985).

    MathSciNet  MATH  Google Scholar 

  4. H. R. Srirangarajan and P. J. Banait, “Analysis of Duffing’s oscillator equation with time-dependent parameters,” J. Sound Vib. 233, 435–440 (2000). doi 10.1006/jsvi.1999.2819

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Hatvani, “The effect of damping on the stability properties of equilibria of non-autonomous systems,” J. Appl. Math. Mech. 65, 707–713 (2001).

    Article  MathSciNet  Google Scholar 

  6. Y. Shen, S. Yang, and X. Liu, “Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method,” Int. J. Mech. Sci. 48, 1256–1263 (2006). doi 10.1016/j.ijmecsci.2006.06.003

    Article  MATH  Google Scholar 

  7. J. Sun, Q.-G. Wang, and Q.-C. Zhong, “A less conservative stability test for second-order linear time-varying vector differential equations,” Int. J. Control 80, 523–526 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Onitsuka, “Uniform asymptotic stability for damped linear oscillators with variable parameters,” Appl. Math. Comput. 218, 1436–1442 (2011). doi 10.1016/j.amc.2011.06.025

    MathSciNet  MATH  Google Scholar 

  9. A. Yu. Aleksandrov, “The stability of the equilibrium positions of non-linear non-autonomous mechanical systems,” J. Appl. Math. Mech. 71, 324–338 (2007).

    Article  MathSciNet  Google Scholar 

  10. A. Yu. Aleksandrov and A. A. Kosov, “Asymptotic stability of equilibrium positions of mechanical systems with a nonstationary leading parameter,” J. Comput. Syst. Sci. Int. 47, 332–345 (2008). doi 10.1134/S1064230708030027

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Yu. Aleksandrov and A. V. Platonov, “On the preservation of asymptotic stability of mechanical systems under the evolution of dissipative forces rezulting in their disappearance,” Sist. Upr. Inf. Tekhnol. 50 (4), 4–7 (2012).

    Google Scholar 

  12. Encyclopedia of Mathematics, Ed. by I. M. Vinogradov and M. Hazewinkel (Sov. Entsiklopediya, Moscow, 1982; Kluwer, Dordrecht, 1989), Vol.3.

  13. V. I. Zubov, Stability of Motion (Vysshaya Shkola, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  14. V. I. Zubov, Dynamics of Controlled Systems (Vysshaya Shkola, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  15. E. Ya. Smirnov, Some Problems of the Mathematical Control Theory (Leningr. Gos. Univ., Leningrad, 1981) [in Russian].

    MATH  Google Scholar 

  16. K. A. Antipov and A. A. Tikhonov, “Parametric control in the problem of spacecraft stabilization in the geomagnetic field,” Autom. Remote Control 68, 1333–1344 (2007). doi 10.1134/S000511790708005X

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Yu. Aleksandrov and A. A. Tikhonov, “Electrodynamic stabilization of earth-orbiting satellites in equatorial orbits,” Cosmic Res. 50, 313–318 (2012). doi 10.1134/S001095251203001X

    Article  Google Scholar 

  18. K. A. Antipov and A. A. Tikhonov, “Electrodynamic control for spacecraft attitude stability in the geomagnetic field,” Cosmic Res. 52, 472–480 (2014). doi 10.1134/S001095251406001X

    Article  Google Scholar 

  19. A. Yu. Aleksandrov, K. A. Antipov, A. V. Platonov, and A. A. Tikhonov, “Electrodynamic attitude stabilization of a satellite in the Konig frame,” Nonlinear Dyn. 82, 1493–1505 (2015). doi doi 10.1007/s11071-015-2256-1

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Yu. Aleksandrov, K. A. Antipov, A. V. Platonov, and A. A. Tikhonov, “Electrodynamic stabilization of artificial earth satellites in the König coordinate system,” J. Comput. Syst. Sci. Int. 55, 296–309 (2016). doi 10.1134/S1064230716010020

    Article  MathSciNet  Google Scholar 

  21. D. R. Merkin, Introduction to the Theory of Stability (Nauka, Moscow, 1987; Springer-Verlag, New York, 1997).

    Google Scholar 

  22. Vibrations in Engineering. Handbook, Vol. 2: Oscillations of Nonlinear Mechanical Systems, Ed. by I. I. Blekhman (Mashinostroenie, Moscow, 1979) [in Russian].

  23. E. I. Rivin, Passive Vibration Isolation (Am. Soc. Mech. Eng., New York, 2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Aleksandrov.

Additional information

Original Russian Text © A.Yu. Aleksandrov, A.A. Tikhonov, 2017, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2017, Vol. 62, No. 4, pp. 633–643.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Tikhonov, A.A. Attitude stabilization of a rigid body in conditions of decreasing dissipation. Vestnik St.Petersb. Univ.Math. 50, 384–391 (2017). https://doi.org/10.3103/S1063454117040021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454117040021

Keywords

Navigation