Skip to main content
Log in

Explicit constructions and the arithmetic of local number fields

  • Mathematics
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

This is a survey of results obtained by members of the St. Petersburg school of local number theory headed by S.V. Vostokov during the past decades. All these results hardly fit into the title of the paper, since they involve a large circle of ideas, which are applied to an even larger class of problems of modern number theory. The authors tried to cover at least a small part of them, namely, those related to the modern approach to explicit expressions of the Hilbert symbol for nonclassical formal modules in the one- and higher-dimensional cases and their applications in local arithmetic geometry and ramification theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. M. Bekker, D. G. Benois, S. V. Vostokov, I. B. Zhukov, A. L. Smirnov, and I. B. Fesenko, “The seminar “Constructive Class Field Theory”,” St. Petersburg Math. J. 4, 175–192 (1992).

    MathSciNet  MATH  Google Scholar 

  2. I. R. Shafarevich, “A general reciprocity law,” Mat. Sb. (N.S.) 26(68), 113–146 (1950).

    MathSciNet  MATH  Google Scholar 

  3. S. V. Vostokov, “Explicit form of the law of reciprocity,” Math. USSR-Izv. 13, 557–588 (1979).

    Article  MATH  Google Scholar 

  4. H. Brckner, Explizites Reziprozit?tsgesetz und Anwendungen (Univ. Essen, Essen, 1979), in Ser.: Vorlesungen aus dem Fachbereich Mathematik der Universitat Essen.

    Google Scholar 

  5. I. B. Fesenko and S. V. Vostokov, Local Fields and Their Extensions, 2nd ed. (Am. Math. Soc., Providence, RI, 2002).

    MATH  Google Scholar 

  6. I. B. Fesenko, “Complete discrete valuation fields. Abelian local class field theories,” in Handbook of Algebra, Ed. by M. Hazewinkel (Elsevier, Amsterdam, 1996), Vol. 1, pp. 221–268.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. B. Fesenko, “Abelian extensions of complete discrete valuation fields,” in Number Theory. Seminare de Paris 1993–1994 (Cambridge Univ. Press, Cambridge, MA, 1996), pp. 47–74.

    Google Scholar 

  8. D. G. Benois and S. V. Vostokov, “Sur les repr?sentations p-adiques des corps locaux multidmensionelles attach?s aux groupes formels,” J. Reine Angew. Math., No. 437, 131–166 (1993).

    MathSciNet  MATH  Google Scholar 

  9. D. G. Benois, S. V. Vostokov, and H. Koch, “On p-extensions of multidimensional local fields,” Math. Nachr. 160, 59–68 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. F. Lai and S. V. Vostokov, “The Kneser relation and the Hilbert pairing in multidimensional local field,” Math. Nachr. 280, 1780–1797 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. V. Vostokov, “Hilbert pairing on a complete high-dimensional field,” Proc. Steklov Inst. Math. 208, 72–83 (1995).

    MATH  Google Scholar 

  12. K. Lai and S. V. Vostokov, “Explicit pairing and class field theory of multidimensional complete fields,” St. Petersburg Math. J. 11, 611–624 (2000).

    MathSciNet  Google Scholar 

  13. T. B. Belyaeva and S. V. Vostokov, “The Hilbert symbol in a complete multidimensional field. I,” J. Math. Sci. 120, 1483–1500 (2004). doi doi 10.1023/B:JOTH.0000017880.47115.ae

    Article  MathSciNet  MATH  Google Scholar 

  14. S. V. Vostokov and O. V. Demchenko, “An explicit form of the Hilbert pairing for the relative formal Lubin–Tate groups,” J. Math. Sci. 89 (2), 1105–1107 (1998). doi doi 10.1007/BF02355855

    Article  MathSciNet  MATH  Google Scholar 

  15. S. V. Vostokov and A. N. Gurevich, “A relationship between the Hilbert and Witt symbols,” J. Math. Sci. 89, 1108–1112 (1998). doi doi 10.1007/BF02355856

    Article  MathSciNet  MATH  Google Scholar 

  16. S. V. Vostokov, Explicit Formulas for the Hilbert Symbol (Int. Press, Sommerville, 2001), in Ser.: Geometry and Topology Monograph Series, pp. 61–68.

    Google Scholar 

  17. F. Lorenz and S. Vostokov, “Honda groups and explicit pairing on the module of Cartier curves,” Contemp. Math. 300, 143–170 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. V. Vostokov, R. P. Vostokova, and O. Yu. Podkopaeva, “Degeneration of the Hilbert pairing in formal groups over local fields,” Vestn. St. Petersburg Univ.: Math. 49, 47–52 (2016). doi doi 10.3103/S1063454116010131

    Article  MathSciNet  Google Scholar 

  19. R. P. Vostokova and P. N. Pital’, “The arithmetic of hyperbolic formal modules,” Vestn. St. Petersburg Univ.: Math. 49, 224–230 (2016). doi doi 10.3103/S1063454116030146

    Article  MathSciNet  Google Scholar 

  20. S. V. Vostokov and P. N. Pital’, “Hilbert pairing on Lorentz formal groups,” Vestn. St. Petersburg Univ.: Math. 50, 117–121 (2017).

    Article  Google Scholar 

  21. M. V. Bondarko, Doctoral Dissertation in Mathematics and Physics (St. Petersburg State Univ., St. Petersburg, 2006).

    Google Scholar 

  22. I. B. Fesenko, “A multidimensional local theory of class fields. II,” St. Petersburg Math. J. 3, 1103–1126 (1992).

    MathSciNet  MATH  Google Scholar 

  23. I. B. Fesenko, “Multidimensional local class field theory,” Dokl. Math. 43, 674–677 (1991).

    MATH  Google Scholar 

  24. I. B. Fesenko, “On class eld theory of multidimensional local elds of positive characteristic,” Adv. Sov. Math. 4, 103–127 (1991).

    MathSciNet  MATH  Google Scholar 

  25. I. B. Fesenko, “Class field theory of multidimensional local fields of characteristic 0 with residue field of positive characteristic,” St. Petersburg Math. J. 3, 649–678 (1992).

    MathSciNet  MATH  Google Scholar 

  26. I. B. Fesenko, “Abelian local p-class field theory,” Math. Ann. 301, 561–586 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. B. Fesenko, “Nonabelian local reciprocity maps,” in Class Field Theory — Its Centenary and Prospects (Am. Math. Soc., Providence, RI, 2001) in Ser.: Advanced Studies in Pure Mathematics, Vol. 30, pp. 63–78.

    MathSciNet  MATH  Google Scholar 

  28. I. B. Fesenko, “On the image of noncommutative reciprocity map,” Homol., Homotopy Appl. 7 (3), 53–62 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. B. Fesenko, “Analysis on arithmetic schemes. I,” Doc. Math. Extra Vol., 261–284 (2003).

  30. I. B. Fesenko, “Measure, integration and elements of harmonic analysis on generalized loop spaces,” in Proceedings of the St. Petersburg Mathematical Society, ed. by N. N. Ural’tseva (Tamara Rozhkovskaya, Novosibirsk, 2005; Am. Math. Soc., Providence, RI, 2006), Vol. 12, pp. 149–165.

    MathSciNet  MATH  Google Scholar 

  31. S. V. Vostokov and E. S. Vostokova, “Pairings in local fields and cryptography,” Lobachevskii J. Math. 36, 319–327 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. V. Vostokov, O. Yu. Podkopaeva, and K. V. Ratko, “Application of explicit Hilbert’s pairing to constructive class field theory and cryptography,” Appl. Math. Sci. 10, 2205–2213 (2016).

    Google Scholar 

  33. Geometry and Topology Monographs, Vol. 3: Invitation to Higher Local Fields, Ed. by I. Fesenko and M. Kurihara (Univ. of Warwick, Warwick, 2000).

  34. M. Morrow, “An introduction to higher dimensional local fields and adeles” (2012). https://arxiv.org/abs/1204.0586.

    Google Scholar 

  35. M. Hazewinkel, Formal Groups and Applications (Academic, New York, 1978), In Ser.: Pure Applied Mathematics, Vol.78.

    MATH  Google Scholar 

  36. A. Fr?hlich, Formal groups (Springer-Verlag, Berlin, 1968), in Ser.: Lecture Notes in Mathematics, Vol.74.

  37. N. P. Strickland, “Formal schemes and formal groups” (2000). https://arxiv.org/abs/math/0011121.

    MATH  Google Scholar 

  38. J. Lurie, Chromatic Homotopy Theory. Lecture Series (2010).

    Google Scholar 

  39. H. Hasse, “Die Gruppe der pn-prim?ren Zahlen f?r einen Primteiler p von p,” J. Reine Angew. Math., No. 176, 174–183 (1936).

    MathSciNet  MATH  Google Scholar 

  40. S. V. Vostokov, “A norm pairing in formal modules,” Math. USSR-Izv. 15, 25–51 (1980).

    Article  MATH  Google Scholar 

  41. S. V. Vostokov, “The Hilbert symbol for Lubin–Tate formal groups. I,” J. Sov. Math. 27, 2885–2901 (1984). doi doi 10.1007/BF01410742

    Article  MATH  Google Scholar 

  42. S. V. Vostokov and I. L. Klimovitskii, “Primary elements in formal modules,” Proc. Steklov Inst. Math. 282, Suppl. 1, 140–149 (2013). doi doi 10.1134/S0081543813070080

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Bekker, M. V. Bondarko, and S. Vostokov, “Shafarevich bases in topological K-groups,” St. Petersburg Math. J. 10, 269–282 (1999).

    MathSciNet  MATH  Google Scholar 

  44. E. V. Ikonnikova and E. V. Shaverdova, “The Shafarevich basis in higher-dimensional local fields,” J. Math. Sci. 202, 410–421 (2014). doi doi 10.1007/s10958-014-2051-4

    Article  MathSciNet  MATH  Google Scholar 

  45. S. S. Afanas’eva, B. M. Bekker, and S. V. Vostokov, “The Hilbert symbol in higher-dimensional local fields for formal Lubin–Tate groups,” J. Math. Sci. 192, 137–153 (2013). doi doi 10.1007/s10958-013-1380-z

    Article  MATH  Google Scholar 

  46. S. S. Afanas’eva, “The Hilbert symbol in higher-dimensional local fields for formal Lubin–Tate groups. II,” J. Math. Sci. 202, 346–359 (2014). doi doi 10.1007/s10958-014-2047-0

    Article  MATH  Google Scholar 

  47. E. V. Ikonnikova, “The Hensel–Shafarevich canonical basis in Lubin–Tate formal modules,” J. Math. Sci. 219, 462–472 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. V. Vostokov, “The Hensel–Shafarevich canonical basis in complete discrete valuation fields,” J. Math. Sci. 188, 570–581 (2013). doi doi 10.1007/s10958-013-1148-5

    Article  MATH  Google Scholar 

  49. T. Honda, “On the theory of commutative formal groups,” J. Math. Soc. Jpn. 22, 213–246 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Lubin and J. Tate, “Formal complex multiplication in local fields,” Ann. Math. 81, 380–384 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  51. O. V. Demchenko, “New relationships between formal Lubin–Tate groups and formal Honda groups,” St. Petersburg Math. J. 10, 785–789 (1999).

    MathSciNet  Google Scholar 

  52. S. V. Vostokov, “Symbols on formal groups,” Math. USSR-Izv. 19, 261–284 (1982).

    Article  MATH  Google Scholar 

  53. O. V. Demchenko, “Formal Honda groups: The arithmetic of the group of points,” St. Petersburg Math. J. 12, 101–115 (2001).

    MathSciNet  Google Scholar 

  54. S. V. Vostokov and O. V. Demchenko, “An explicit formula of the Hilbert pairing for Honda formal groups,” J. Math. Sci. 116, 2926–2952 (2003). doi doi 10.1023/A:1023494524764

    Article  MATH  Google Scholar 

  55. J.-M. Fontaine, Groupes p-Divisibles sur les Corps Locaux (Soc. Math. France, Paris, 1977), in Ser.: Asterisque, Vol. 47–48.

  56. O. V. Demchenko, “Formal groups over p-adic rings of integers with small ramification and distinguished isogenies,” St. Petersburg Math. J. 14, 405–428 (2002).

    MathSciNet  Google Scholar 

  57. O. Demchenko, “Covariant Honda theory,” Tohoku Math. J. 57, 303–319 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  58. J.-M. Fontaine, “Sur la construction du module de Dieudonn? d’un groupe formel,” C._R. Acad. Sci. Paris. A–B 280, 1273–1276 (1975).

    MATH  Google Scholar 

  59. J. Lubin and J. Tate, “Formal moduli for one-parameter formal Lie group,” Bull. Soc. Math. Fr. 94, 19–59 (1966).

    MathSciNet  MATH  Google Scholar 

  60. O. Demchenko and A. Gurevich, “p-adic period map for the moduli space of deformations of a formal group,” J. Algebra 288, 445–462 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Gross and M. Hopkins, “Equivariant vector bundles on the Lubin–Tate moduli space,” Contemp. Math. 158, 23–88 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  62. T. Honda, “Invariant differentials and L-functions. Reciprocity law for quadratic fields and elliptic curves over Q,” Rend. Semin. Mat. Univ. Padova 49, 323–335 (1973).

    MathSciNet  MATH  Google Scholar 

  63. O. Demchenko and A. Gurevich, “Reciprocity laws through formal groups,” Proc. Am. Math. Soc. 141, 1591–1596 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  64. C. Deninger and E. Nart, “Formal groups and L-series,” Comment. Math. Helvetici 65, 318–333 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  65. O. Demchenko and A. Gurevich, “On the moduli space of deformations of a p-divisible group,” Math. Res. Lett. 21, 1015–1045 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  66. O. Demchenko and A. Gurevich, “Kernels in the category of formal group laws,” Can._J. Math. 68, 334–360 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  67. S. V. Vostokov, “Explicit construction of class field theory for a multidimensional local field,” Math. USSR-Izv. 26, 263–287 (1986).

    Article  MATH  Google Scholar 

  68. S. V. Vostokov and V. V. Volkov, “Explicit form of the Hilbert symbol for polynomial formal groups,” St. Petersburg Math. J. 26, 785–796 (2015). doi doi 10.1090/spmj/1358

    Article  MATH  Google Scholar 

  69. S. V. Vostokov, V. V. Volkov, and M. V. Bondarko, “Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I,” Zap. Nauchn. Semin. POMI 430, 53–60 (2014).

    MATH  Google Scholar 

  70. S. V. Vostokov and V. V. Volkov, “Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. II,” Zap. Nauchn. Semin. POMI 443, 46–60 (2014).

    Google Scholar 

  71. V. V. Volkov, “On a norm property of Hilbert symbol over polynomial formal module in multidimensional local field,” Vestn. St. Petersburg Univ.: Math. 49, 320–324 (2016). doi doi 10.3103/S1063454116040154

    Article  Google Scholar 

  72. S. V. Vostokov and I. B. Fesenko, “A certain property of the Hilbert pairing,” Math. Notes Akad. Sci. USSR 43, 226–230 (1988). doi doi 10.1007/BF01138846

    Article  MATH  Google Scholar 

  73. V. A. Kolyvagin, “Formal groups and the norm residue symbol,” Math. USSR-Izv. 15, 289–348 (1980).

    Article  MATH  Google Scholar 

  74. S. V. Vostokov and R. Perlis, “Norm series for the Lubin–Tate formal groups,” J. Math. Sci. 120, 1549–1560 (2004). doi doi 10.1023/B:JOTH.0000017883.76167.65

    Article  MATH  Google Scholar 

  75. S. S. Afanas’eva and G. K. Pak, “Norm series for Honda formal groups,” J. Math. Sci. 183, 577–583 (2012). doi 10.1007/s10958-012-0825-0

    Article  MathSciNet  MATH  Google Scholar 

  76. S. V. Vostokov and G. K. Pak, “Norm series in multidimensional local fields,” J. Math. Sci. 130, 4675–4688 (2005). doi doi 10.1007/s10958-005-0362-1

    Article  MathSciNet  MATH  Google Scholar 

  77. S. S. Afanas’eva, “Norm series for multi-dimensional Honda formal groups,” J. Math. Sci. 192, 127–136 (2013). doi doi 10.1007/s10958-013-1379-5

    Article  MATH  Google Scholar 

  78. D. Hilbert, Gesammelte Abhandlungen (Springer-Verlag, Berlin, 1932), Vol.1.

    Book  MATH  Google Scholar 

  79. S. V. Vostokov, “The classical reciprocity law for power residues as an analog of the Abelian integral theorem,” St. Petersburg Math. J. 20, 929–936 (2009). doi doi 10.1090/S1061-0022-09-01078-4

    Article  MATH  Google Scholar 

  80. M. A. Ivanov, “The product of symbols of pnth power residues as an Abelian integral,” St. Petersburg Math. J. 24, 275–281 (2013). doi doi 10.1090/S1061-0022-2013-01238-6

    Article  MATH  Google Scholar 

  81. S. V. Vostokov and M. A. Ivanov, “Cauchy’s integral theorem and classical reciprocity law,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 154 (2), 73–82 (2012).

    MathSciNet  Google Scholar 

  82. L. Schnirelmann, “Sur les fonctions dans les corps normés et algébriquement fermés,” Izv. Akad. Nauk SSSR Ser. Mat. 2, 487–498 (1938).

    MATH  Google Scholar 

  83. Z. I. Borevich, “The multiplicative group of a regular local field with a cyclic group of operators,” Izv. Akad. Nauk SSSR Ser. Mat. 28, 707–712 (1964).

    MathSciNet  MATH  Google Scholar 

  84. Z. I. Borevich, “The multiplicative group of cyclic p-extensions of a local field,” Proc. Steklov Inst. Math. 80, 15–30 (1965).

    MathSciNet  MATH  Google Scholar 

  85. Z. I. Borevich and S. V. Vostokov, “Ring of integers in an extension of prime degree of a local field as the Galois module,” Zap. Nauchn. Semin. LOMI 31, 24–37 (1972).

    MATH  Google Scholar 

  86. S. V. Vostokov, “Ideals of an abelian p-extension of local fields as Galois modules,” J. Sov. Math. 11, 567–584 (1979).

    Article  MATH  Google Scholar 

  87. M. V. Bondarko and S. V. Vostokov, “Decomposability of ideals as Galois modules in complete discrete valuation fields,” St. Petersburg Math. J. 11, 233–249 (2000).

    MathSciNet  MATH  Google Scholar 

  88. M. V. Bondarko and S. V. Vostokov, “Decomposition of ideals in Abelian p-extensions of complete, discretely valuated fields,” J. Math. Sci. 95, 2058–2064 (1999). doi doi 10.1007/BF02169959

    Article  Google Scholar 

  89. M. V. Bondarko, S. V. Vostokov, and I. B. Zhukov, “Additive Galois modules in complete discrete valuation fields,” St. Petersburg Math. J. 9, 675–693 (1998).

    MathSciNet  MATH  Google Scholar 

  90. M. V. Bondarko and S. V. Vostokov, “Additive Galois modules in Dedekind rings. Decomposability,” St. Petersburg Math. J. 11, 1019–1033 (2000).

    MathSciNet  MATH  Google Scholar 

  91. S. V. Vostokov, I. I. Nekrasov, and R. Vostokova, “Lutz filtration as a Galois module,” Lobachevskii J. Math. 37, 214–221 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  92. S. V. Vostokov and I. I. Nekrasov, “The Lubin–Tate formal module in a cyclic unramified p-extension as a Galois module,” Zap. Nauchn. Semin. POMI 430, 61–66 (2014).

    MathSciNet  MATH  Google Scholar 

  93. Manin Yu. I., “The theory of commutative formal groups over fields of finite characteristic,” Russ. Math. Surv. 18 (6), 1–83 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  94. F. Oort, Commutative Group Schemes (Springer-Verlag, Berlin, 1966), in Ser.: Lecture Notes in Mathematics, Vol.15.

  95. M. V. Bondarko and S. V. Vostokov, “An explicit classification of formal groups over local fields,” Proc. Steklov Inst. Math. 241, 35–57 (2003).

    MathSciNet  MATH  Google Scholar 

  96. M. V. Bondarko, “Canonical representatives in strict isomorphism classes of formal groups,” Math. Notes 82, 159–164 (2007). doi doi 10.1134/S0001434607070206

    Article  MathSciNet  MATH  Google Scholar 

  97. M. V. Bondarko, “Isogeny classes of formal groups over complete discrete valuation fields with arbitrary residue fields,” St. Petersburg Math. J. 17, 975–988 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  98. M. V. Bondarko, “Explicit classification of formal groups over complete discrete valuation fields with imperfect residue field,” in Proceedings of the St. Petersburg Mathematical Society, ed. by N. N. Uralt’seva (Tamara Rozhkovskaya, Novosibirsk, 2005; Am. Math. Soc., Providence, RI, 2006), Vol. 11, pp. 1–30.

    MathSciNet  MATH  Google Scholar 

  99. M. V. Bondarko, “Classification of finite commutative group schemes over complete discrete valuation rings; The tangent space and semistable reduction of Abelian varieties,” St. Petersburg Math. J. 18, 737–755 (2007).

    Article  MATH  Google Scholar 

  100. R. E. MacKenzie and G. Whaples, “Artin–Schreier equations in characteristic zero,” Am. J. Math. 78, 473–485 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  101. I. B. Fesenko, S. V. Vostokov, and I. B. Zhukov, “On the theory of multidimensional local fields. Methods and constructions,” Leningrad Math. J. 2, 775–800 (1991).

    MathSciNet  MATH  Google Scholar 

  102. V. G. Boitsov and I. B. Zhukov, “Continuability of cyclic extensions of complete discrete valuation fields,” J. Math. Sci. 130, 4643–4650 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  103. S. V. Vostokov and I. B. Zhukov, “Some approaches to the construction of abelian extensions for p-adic fields,” in Proceedings of the St. Petersburg Mathematical Society, ed. by O. A. Ladyzhenskaya (S.-Peterb. Gos. Univ., St. Petersburg, 1995; Am. Math. Soc., Providence, RI, 1995), Vol. 3, in Ser.: American Mathematical Society Translations, Series 2, Vol. 159, pp. 157–174.

    MathSciNet  MATH  Google Scholar 

  104. E. F. Lysenko and I. B. Zhukov, “Construction of cyclic extensions of degree p2 for a complete field” (in preparation).

  105. I. Zhukov, “Explicit abelian extensions of complete discrete valuation fields,” Geom. Topol. Monogr. 3, 117–122 (Geom. Topol. Publ., Coventry, 2000). http://msp.org/gtm/2000/03/p014.xhtml. Accessed June 7, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  106. H. Epp, “Eliminating wild ramification,” Invent. Math. 19, 235–250 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  107. A. I. Madunts and I. B. Zhukov, “Multidimensional complete fields: Topology and other basic constructions,” in Proceedings of the St. Petersburg Mathematical Society, ed. by O. A. Ladyzhenskaya (S.-Peterb. Gos. Univ., St. Petersburg, 1995; Am. Math. Soc., Providence, RI, 1995), Vol. 3, in Ser.: American Mathematical Society Translations, Series 2, Vol. 159, pp. 1–34 (1995).

    MathSciNet  MATH  Google Scholar 

  108. I. Zhukov, “Higher dimensional local fields,” Geom. Topol. Monogr. 3, 5–18 (2000). doi 10.2140/gtm.2000.3.5

    Article  MathSciNet  MATH  Google Scholar 

  109. M. V. Koroteev and I. B. Zhukov, “Elimination of wild ramification,” St. Petersburg Math. J. 11, 1063–1083 (2000).

    MathSciNet  MATH  Google Scholar 

  110. O. Yu. Ivanova and I. B.Zhukov, “On two approaches to classification of higher local fields” (in preparation).

  111. M. Kurihara, “On two types of complete discrete valuation fields,” Compos. Math. 63, 237–257 (1987).

    MathSciNet  MATH  Google Scholar 

  112. O. Yu. Ivanova, “On the relationship between Kurihara’s classification and the theory of ramification removal,” St. Petersburg Math. J. 24, 283–299 (2013).

    Article  MATH  Google Scholar 

  113. O. Yu. Ivanova, “Kurihara classification and maximal depth extensions for multidimensional local fields,” St. Petersburg Math. J. 24, 877–901 (2013).

    Article  MATH  Google Scholar 

  114. I. B. Zhukov, “Milnor and topological K-groups of higher-dimensional complete fields,” St. Petersburg Math. J. 9, 69–105 (1998).

    MathSciNet  Google Scholar 

  115. O. Yu. Ivanova, “The Zp-rank of a topological K-group,” St. Petersburg Math. J. 20, 569–591 (2009).

    Article  MATH  Google Scholar 

  116. O. Yu. Ivanova, “Topological K-groups of two-dimensional local fields,” J. Math. Sci. 147, 7088–7097 (2007).

    Article  MathSciNet  Google Scholar 

  117. J.-P. Serre, Corps Locaux, 2nd ed. (Hermann, Paris, 1968).

    MATH  Google Scholar 

  118. L. Xiao and I. Zhukov, “Ramification of higher local fields, approaches and questions,” St. Petersburg Math. J. 26, 695–740 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  119. L. Xiao and I. Zhukov, “Ramification in the imperfect residue field case, approaches and questions,” in Proc. 2nd Int. Conf. Workshop on Valuation Theory, Segovia and El Escorial, Spain, July 18–29, 2011, Ed. by Campillo, Antonio, et al. (Eur. Math. Soc., Zurich, 2014), in Ser.: EMS Series of Congress Reports, pp. 600–656.

    Google Scholar 

  120. A. Abbes and T. Saito, “Ramification of local fields with imperfect residue fields. I,” Am. J. Math 124, 879–920 (2002). https://arxiv.org/abs/math/0010103.

    Article  MathSciNet  MATH  Google Scholar 

  121. A. Abbes and T. Saito, “Ramification of local fields with imperfect residue fields. II,” Doc. Math. Extra Vol., 5–72 (2003).

  122. I. B. Zhukov, “On ramification theory in the imperfect residue field case,” Sb.: Math. 194, 1747–1774 (2003).

    MathSciNet  MATH  Google Scholar 

  123. I. Zhukov, “An approach to higher ramification theory,” Geom. Topol. Monogr. 3, 143–150 (2000). doi doi 10.2140/gtm.2000.3.143

    Article  MathSciNet  MATH  Google Scholar 

  124. K. Kato, “Vanishing cycles, ramification of valuation and class field theory,” Duke Math. J. 55, 629–659 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  125. V. A. Abrashkin, “Ramification theory for higher dimensional local fields,” in Algebraic Number Theory and Algebraic Geometry (Am. Math. Soc., Providence, RI, 2002), in Ser. Contemporary Mathematics, Vol. 300, pp. 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  126. V. A. Abrashkin, “An analogue of the Grothendieck conjecture for two-dimensional local fields of finite characteristic,” Proc. Steklov Inst. Math. 241, 2–34 (2003).

    MathSciNet  MATH  Google Scholar 

  127. V. A. Abrashkin, “Towards explicit description of ramification filtration in the 2-dimensional case,” J. Theor. Nombres Bordeaux 16, 293–333 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  128. V. A. Abrashkin, “An analogue of the field-of-norms functor and the Grothendieck conjecture,” J. Algebraic Geom. 16, 671–730 (2007), https://arxiv.org/abs/math/0503200.

    Article  MathSciNet  MATH  Google Scholar 

  129. S. V. Vostokov and I. B. Zhukov, “On certain extensions of two-dimensional local fields,” in Proc. Int. Algebraic Conf. Dedicated to the Memory of D. K. Faddeev, St. Petersburg, June 24–30, 1997 (St. Petersburg, 1997).

    Google Scholar 

  130. I. B. Zhukov, “Ramification in elementary Abelian extensions,” J. Math. Sci. 202, 404–409 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  131. I. B. Zhukov, “The elementary Abelian conductor,” J. Math. Sci. 209, 564–567 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  132. I. B. Zhukov and G. K. Pak, “Approximation approach to ramification theory,” St. Petersburg Math. J. 27, 967–976 (2016).

    Article  MATH  Google Scholar 

  133. G. Laumon, “Semi-continuit? du conducteur de Swan (d’apr?s P. Deligne),” Ast?risque 83, 173–219 (1981).

    MATH  Google Scholar 

  134. H. Hu and E. Yang, “Semi-continuity for total dimension divisors of ?tale sheaves,” Int. J. Math. 10, 1750001 (2016).

    MATH  Google Scholar 

  135. J.-L. Brylinski, “Th?orie du corps de classes de Kato et rev?tements ab?liens de surfaces,” Ann. Inst. Fourier, Grenoble 33, 23–38 (1983).

    Article  MathSciNet  Google Scholar 

  136. I. Barrientos, “Log ramification via curves in rank 1” (2013). https://arxiv.org/abs/1307.5814.

    Google Scholar 

  137. I. B. Zhukov, “Semiglobal models of extensions of two-dimensional local fields,” Vestn. St. Petersburg Univ.: Math. 43, 33–38 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  138. I. B. Zhukov, “Ramification of surfaces: Artin–Schreier extensions,” in Algebraic Number Theory and Algebraic Geometry (Am. Math. Soc., Providence, RI, 2002), in Ser.: Contemporary Mathematics, Vol. 300, pp. 211–220.

    Article  MathSciNet  MATH  Google Scholar 

  139. A. Campillo, I. Faizov, and I. Zhukov, “Curve singularities and ramification of surface morphisms” (in preparation). eparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vostokov.

Additional information

Original Russian Text © S.V. Vostokov, S.S. Afanas’eva, M.V. Bondarko, V.V. Volkov, O.V. Demchenko, E.V. Ikonnikova, I.B. Zhukov, I.I. Nekrasov, P.N. Pital’, 2017, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2017, Vol. 62, No. 3, pp. 402–435.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostokov, S.V., Afanas’eva, S.S., Bondarko, M.V. et al. Explicit constructions and the arithmetic of local number fields. Vestnik St.Petersb. Univ.Math. 50, 242–264 (2017). https://doi.org/10.3103/S1063454117030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454117030128

Keywords

Navigation