Skip to main content
Log in

Asymptotic behavior of solutions of Lorenz-like systems: Analytical results and computer error structures

  • Mathematics
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

For Lorenz-like systems with volume contractions, analytical criteria for the global stability and instability of stationary sets are obtained. Numerical experiments for the study of the qualitative behavior of trajectories of Lorenz-like systems are described and analyzed. It is shown that their interpretation can lead to incorrect conclusions unless an additional verification oriented to the analytical results is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  2. D. Ruelle and F. Takens, “On the nature of turbulence,” Commun. Math. Phys. 20, 167–192 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, (Springer-Verlag, New York, 1982).

    Book  MATH  Google Scholar 

  4. H. W. Broer, F. Dumortier, S. J. Van Strien, et al., Structures in Dynamics: Finite Dimensional Deterministic Studies (North Holland, Amsterdam, 1991), vol.2.

    MATH  Google Scholar 

  5. J. C. Sprott, Strange Attractors: Creating Patterns in Chaos (M&T Books, New York, 1993).

    Google Scholar 

  6. J. I. Neimark and P. S. Landa, Stochastic and Chaotic Oscillations (Nauka, Moscow, 1987; Springer-Verlag, Dordrecht, 2012).

    MATH  Google Scholar 

  7. M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos (Academic, San Diego, CA, 2012).

    MATH  Google Scholar 

  8. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, et al., Methods of Qualitative Theory in Nonlinear Dynamics, Part 1 (World Sci., Singapore, 1998).

    Book  MATH  Google Scholar 

  9. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, et al., Methods of Qualitative Theory in Nonlinear Dynamics, Part 2 (World Sci., Singapore, 2001).

    Book  MATH  Google Scholar 

  10. V. A. Boichenko, G. A. Leonov, and V. Reitmann, Dimension Theory for Ordinary Differential Equations (Teubner, Stuttgart, 2005).

    Book  MATH  Google Scholar 

  11. G. A. Leonov, Strange Attractors and Classical Stability Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2008).

    MATH  Google Scholar 

  12. Z. Elhadj and J. C. Sprott, 2-D Quadratic Maps and 3-D ODE Systems: A Rigorous Approach (World Sci., Singapore, 2010).

    MATH  Google Scholar 

  13. S. Wiggins, Global Bifurcations and Chaos: Analytical Methods (Springer-Verlag, New York, 2013).

    MATH  Google Scholar 

  14. I. Shimada and T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems,” Prog. Theor. Phys. 61, 1605–1616 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Doedel, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations (California Inst. of Technol., Pasadena, CA, 1986).

    Google Scholar 

  16. T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer-Verlag, New York, 1989).

    Book  MATH  Google Scholar 

  17. E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction (Springer-Verlag, Berlin, 1990).

    Book  MATH  Google Scholar 

  18. M. Dellnitz and O. Junge, “Set oriented numerical methods for dynamical systems,” in Handbook of Dynamical Systems, Ed. by B. Fiedler (North Holland, Amsterdam, 2002), Vol. 2, pp. 221–264 (2002).

    MathSciNet  MATH  Google Scholar 

  19. Numerical Continuation Methods for Dynamical Systems, Ed. by B. Krauskopf, H. M. Osinga, and J. Galan-Vioque (Springer-Verlag, Dordrecht, 2007).

  20. S. Ou Yang, Y. Wu, Y. Lin, et al., “The discontinuity problem and “chaos” of Lorenz’s model,” Kybernetes 27, 621–635 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Ou Yang and Y. Lin, “Problems with Lorenz’s modeling and the algorithm of chaos doctrine,” in Frontiers in the Study of Chaotic Dynamical Systems with Open Problems, Ed. by Z. Elhadj (World Sci., Singapore, 2011), pp. 1–29.

    Chapter  Google Scholar 

  22. W. Tucker, “The Lorenz attractor exists,” C. R. Acad. Sci., Ser. I: Math. 328, 1197–1202 (1999).

    MathSciNet  MATH  Google Scholar 

  23. M. Viana, “What’s new on Lorenz strange attractors?,” Math. Intell. 22 (3), 6–19 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Stewart, “Mathematics: The Lorenz attractor exists,” Nature 406, 948–949 (2000).

    Article  Google Scholar 

  25. G. A. Leonov, “Shilnikov chaos in Lorenz-like systems,” Int. J. Bifurcation Chaos. 23 (3), 1350058 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. A. Leonov, “Method of asymptotic integration for solutions of Lorenz-type systems,” Dokl. Akad. Nauk 91 (3), 352 (2015).

    MathSciNet  MATH  Google Scholar 

  27. G. Chen and T. Ueta, “Yet another chaotic attractor,” Int. J. Bifurcation Chaos. 9, 1465–1466 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Lü and G. Chen, “A new chaotic attractor coined,” Int. J. Bifurcation Chaos 12, 1789–1812 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Tigan and D. Opris, “Analysis of a 3D chaotic system,” Chaos, Solitons Fractals 36, 1315–1319 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Barboza and G. Chen, “On the global boundedness of the Chen system,” Int._J. Bifurcation Chaos 21, 3373–3385 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Zhang, X. Liao, and G. Zhang, “On the global boundedness of the Lü system,” Appl. Math. Comput. 284, 332–339 (2016).

    MathSciNet  Google Scholar 

  32. F. Zhang, C. Mu, and X. Li, “On the boundness of some solutions of the Lü system,” Int. J. Bifurcation Chaos 22, 1250015 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. A. Leonov and N. V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lü systems,” Appl. Math. Comput. 256, 334–343 (2015).

    MathSciNet  MATH  Google Scholar 

  34. V. A. Yakubovich, G. A. Leonov, and A. Kh. Gelig, Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (World Sci., Singapoure, 2004).

    Book  MATH  Google Scholar 

  35. G. A. Leonov and M. M. Shumafov, Stabilization of Linear Systems (Cambridge Sci., Cambridge, 2012).

    MATH  Google Scholar 

  36. N. E. Zubov, E. A. Vorob’eva, E. A. Mikrin, et al., “Synthesis of stabilizing spacecraft control based on generalized Ackermann’s formula,” J. Comput. Syst. Sci. Int. 50, 93–103 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, et al. “Synthesis of controls for a spacecraft that optimize the pole placement of the closed-loop control system,” J. Comput. Syst. Sci. Int. 51, 431–444 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  38. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, et al., “The use of the exact pole placement algorithm for the control of spacecraft motion,” J. Comput. Syst. Sci. Int. 52, 129–144 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  39. N. E. Zubov, E. A. Mikrin, M. Sh. Misrikhanov, et al., “Modification of the exact pole placement method and its application for the control of spacecraft motion,” J. Comput. Syst. Sci. Int. 52, 279–292 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  40. V. M. Popov, Hyperstability of Control Systems (Springer-Verlag, Berlin, 1973).

    Book  MATH  Google Scholar 

  41. J. P. LaSalle, “Some extensions of Liapunov’s second method,” IRE Trans. Circuit Theory 7, 520–527 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Leonov.

Additional information

Original Russian Text © G.A. Leonov, B.R. Andrievskiy, R.N. Mokaev, 2017, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2017, Vol. 62, No. 1, pp. 25–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, G.A., Andrievskiy, B.R. & Mokaev, R.N. Asymptotic behavior of solutions of Lorenz-like systems: Analytical results and computer error structures. Vestnik St.Petersb. Univ.Math. 50, 15–23 (2017). https://doi.org/10.3103/S1063454117010071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454117010071

Keywords

Navigation