Skip to main content

Analogues of Takens’ theorems for generalized actions of the group ℤ

Abstract

The notion of a generalized action of the group ℤ on a topological space generated by an arbitrary countable family of pairwise commuting homeomorphisms is introduced, and a study of generalized orbits under such actions is given. Analogues of Takens’ theorems on the genericity of the maximal and minimal ɛ-equivalences for such actions are obtained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Yu. Pilyugin, Spaces of Dynamical Systems (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2008) [in Russian].

    Google Scholar 

  2. 2.

    A. Katok and R. J. Spatzier, “Differential Rigidity of Anosov Actions of Higher Rank Abelian Groups and Algebraic Lattice Actions,” Proc. Steklov Math. Inst. 216, 292–319 (1997).

    MathSciNet  Google Scholar 

  3. 3.

    B. Kalinin and A. Katok, “Invariant Measures for Actions of Higher Rank Abelian Groups,” Proc. Symp. Pure Math. 69, 593–637 (2001).

    MathSciNet  Google Scholar 

  4. 4.

    S. Yu. Pilyugin and S. B. Tikhomirov, “Shadowing in Actions of Some Abelian Groups,” Fund. Math. 179, 83–96 (2003).

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    H. Omori, Infinite-Dimensional Lie Groups (AMS, Providence, 1997).

    MATH  Google Scholar 

  6. 6.

    F. Takens, “On Zeeman’s Tolerance Stability Conjecture,” in Nonlinear Optimization, Lecture Notes in Math, Vol. 197 (Springer, Berlin, 1971), pp. 209–219.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Begun.

Additional information

Original Russian Text © N.A. Begun, S.Yu. Pilyugin, 2010, published in Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1. Matematika, Mekhanika, Astronomiya, 2010, No. 4, pp. 10–16.

About this article

Cite this article

Begun, N.A., Pilyugin, S.Y. Analogues of Takens’ theorems for generalized actions of the group ℤ . Vestnik St.Petersb. Univ.Math. 43, 198–203 (2010). https://doi.org/10.3103/S1063454110040023

Download citation

Keywords

  • generalized action
  • generalized orbit
  • maximal and minimal equivalences