Skip to main content
Log in

Stability of uncertain discrete systems

  • Mathematics
  • Published:
Vestnik St. Petersburg University: Mathematics Aims and scope Submit manuscript

Abstract

The uncertain system

$$ x_{n + 1} = A_n x_n , n = 0,1,2, \ldots , $$

is considered, where the coefficients a ij (n) of the m×m matrix A n are functionals of any nature subject to the constraints

$$ \begin{array}{*{20}c} {\left| {a_{i,i} (n)} \right| \leqslant \alpha _ * < 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \alpha _0 for j \geqslant i + 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \delta for j < i.} \\ \end{array} $$

Such systems include, in particular, switched-type systems, whose matrix A can take values in a given finite set.

By using a special Lyapunov function, a bound δ ≤ δ(α0*) ensuring the global asymptotic stability of the system is found. In particular, the system is stable if the last inequality is replaced by a i,j (n) = 0 for j < i.

It is shown that pulse-width modulated systems reduce to the uncertain systems under consideration; moreover, in the case of a pulse-width modulation of the first kind, the coefficients of the matrix A are functions of x(n), and in the case of a modulation of the second kind, they are functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Kuntsevich and Yu. N. Chekhovoi, Nonlinear Frequency- and Pulse-Width Modulated Control Systems (Tekhnika, Kiev, 1970) [in Russian].

    Google Scholar 

  2. Ya. Z. Tsypkin and Yu. S. Popkov, The Theory of Nonlinear Pulse Systems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. I. Shepelyavyi, Dokl. Akad. Nauk SSSR 190(5), 49–56 (1970).

    Google Scholar 

  4. A. Kh. Gelig, I. E. Zuber, and A. N. Churilov, Stability and Stabilization of Nonlinear Systems (Izd. S.-Peterb. Univ., St. Petersburg, 2006) [in Russian].

    Google Scholar 

  5. I. Kubiaczyk and S. H. Sakar, Appl. Math. 30(4), 441–449 (2003).

    MATH  MathSciNet  Google Scholar 

  6. E. M. Elabbasy, S. H. Saker, and H. El-Metwally, Math. Slovaca 57, 243–258 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Kh. Gelig, Vestn. S.-Peterburg. Univ., Mat. Mekh. Astron., Ser. 1, No. 3, 15–18 (2008).

  8. Jia Xinchun, J. System Sci. Complexity 3(18), 302–308 (2005).

    Google Scholar 

  9. Shinn-Horng Chen and Jyh-Horng Chou, Appl. Math. Comput. 186, 1660–1670 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, SIAM Rev. 49(4), 545–592 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Kh. Gelig and A. N. Churilov, Stability and Oscillations of Nonlinear Pulse-Modulated Systems (Birkhäuser, Boston, 1998).

    MATH  Google Scholar 

  12. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965; Nauka, Moscow, 1970).

    MATH  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © I.E. Zuber, A.Kh. Gelig, 2009, published in Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1. Matematika, Mekhanika, Astronomiya, 2009, No. 1, pp. 3–9.

About this article

Cite this article

Zuber, I.E., Gelig, A.K. Stability of uncertain discrete systems. Vestnik St.Petersb. Univ.Math. 42, 1–6 (2009). https://doi.org/10.3103/S1063454109010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454109010014

Keywords

Navigation