Skip to main content
Log in

Qualitative theory of nonlinear steady water waves

  • To the 100th Anniversary of Birthday of Solomon Grigor’evich Mikhlin
  • Published:
Vestnik St. Petersburg University: Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear boundary problem describing two-dimensional steady waves on the surface of water with finite depth is discussed. The problem is formulated in the conventional statement (the gravity is taken into account, but the surface tension is neglected). The latter one allows discussing the whole class of bounded waves that includes periodic waves, solitary waves, and other types of waves (for instance, almost-periodic waves, although their existence has not been established yet). This fact suggests that the results obtained fall within the domain of the qualitative theory of differential equations (investigation of the properties of solutions without finding them). In this paper, two approaches to the qualitative theory are discussed. The first approach consists in averaging the solution along the vertical sections of the region, and the second approach is based on the authors’ modification of Byatt-Smith’s integro-differential equation. Thus, the paper contains an overview of the results obtained for the problem of nonlinear stationary waves on water with finite depth. Two approaches to this problem form a basis of the qualitative theory of such waves, because there are no constraints imposed on the waves except for the boundedness of their profiles and steepness restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Amick and J. F. Toland, Arch. Ration. Mech. Anal. 76, 9–95 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  2. K. I. Babenko, Dokl. Akad. Nauk SSSR 294, 1033–1037 (1987).

    MathSciNet  Google Scholar 

  3. K. I. Babenko, Dokl. Akad. Nauk SSSR 294, 1289–1292 (1948).

    MathSciNet  Google Scholar 

  4. T. B. Benjamin, J. Fluid Mech. 295, 337–356 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. B. Benjamin and M. J. Lighthill, Proc. Roy. Soc. London, Ser. A 224, 448–460 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. G. B. Byatt-Smith, Proc. Roy. Soc. London, Ser. A 315, 405–418 (1970).

    Article  MathSciNet  Google Scholar 

  7. M. D. Groves, J. Nonlin. Math. Phys. 11, 435–460 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Dias and G. Iooss, in Handbook of Mathematical Fluid Dynamics, Ed. by S. Friedlander and D. Serre (Elsevier, Amsterdam, 2003), pp. 443–499.

    Chapter  Google Scholar 

  9. G. Keady and J. Norbury, J. Fluid Mech. 70, 663–671 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. E. Kochin, Tr. TsAGI 356 (1938).

  11. N. E. Kochin, Proceedings of Conference on the Theory of Wave Resistance (Izd. TsAGI, 1937).

  12. V. Kozlov and N. Kuznetsov, J. Math. Fluid Mech. (in press).

  13. V. Kozlov and N. Kuznetsov, submitted for publication in J. Math. Pures Appl.

  14. V. Kozlov and N. Kuznetsov, “On Data Uniquely Determining Steady Water Waves” (in press).

  15. W. Craig, P. Sternberg, Comm. PDE 13, 603–633 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Kuznetsov, V. Maz’ya, and B. Vainberg, Linear Water Waves: A Mathematical Approach (Cambridge University Press, Cambridge, 2002).

    MATH  Google Scholar 

  17. H. Lewy, Proc. Amer. Math. Soc. 3, 111–113 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. S. Longuet-Higgins, Proc. Roy. Soc. A 337, 1–13 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. G. Mikhlin, Integral Equations and Their Applications (Gostekhizdat, Moscow, 1949; New York, Pergamon, 1957).

    Google Scholar 

  20. S. G. Mikhlin, Direct Methods in Mathematical Physics (Gostekhizdat, Moscow, 1950; New York, Pergamon, 1957).

    Google Scholar 

  21. A. I. Nekrasov, An Exact Theory of Steady Waves on the Surface of a Heavy Fluid (Akad. Nauk SSSR, Moscow, 1951) [in Russian].

    Google Scholar 

  22. P. I. Plotnikov, Mathematics of the USSR-Izvestiya 38(2), 333–357 (1992).

    Article  MathSciNet  Google Scholar 

  23. D. J. Struik, Math. Ann. 95, 595–634 (1926).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. O. Friedrichs and D. H. Hyers, Comm. Pure Appl. Math. 7, 517–550 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  25. E. Zeidler, Nonlinear Functional Analysis and its Applications (Springer, Berlin, 1988), Vol. 4.

    MATH  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.A. Kozlov, N.G. Kuznetsov, 2008, published in Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1. Matematika, Mekhanika, Astronomiya, 2008, No. 2, pp. 33–46.

About this article

Cite this article

Kozlov, V.A., Kuznetsov, N.G. Qualitative theory of nonlinear steady water waves. Vestnik St.Petersb. Univ.Math. 41, 113–124 (2008). https://doi.org/10.3103/S1063454108020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454108020052

Keywords

Navigation