Skip to main content
Log in

Creation of Light-Trapping Microstructures on the Surface of Metals under the Influence of Nanosecond Laser Pulses

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Light-trapping micro- and nanostructures generated on various material surfaces have garnered significant interest in recent years due to their pivotal role in various scientific and technological applications. Direct laser writing has emerged as a prominent, versatile, and practical method for fabricating these structures. In this study, we employed nanosecond pulsed laser radiation to create light-trapping structures with diverse topologies. Through the texturing process, we achieved an average total reflectance of 13.6–16.9% across a wide wavelength range (250–2500 nm) on the surface of aluminum samples. Furthermore, we demonstrate the ability to modulate the infrared absorption of material surfaces by controlling the height of the resulting structures, which holds substantial importance for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Razinkin, A.S., Shalaeva, E.V., and Kuznetsov, M.V., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 10, p. 1318. https://doi.org/10.3103/S1062873808100043

    Article  Google Scholar 

  2. Milichko, V.A., Shalin, A.S., Mukhin, I.S., Kovrov, A.E., Krasilin, A.A., Vinogradov, A.V., Belov, P.A., and Simovski, C.R., Phys.—Usp., 2016, vol. 59, no. 8, p. 727. https://doi.org/10.3367/ufne.2016.02.037703

    Article  CAS  ADS  Google Scholar 

  3. Kudryashov, S., Boldyrev, K., Nastulyavichus, A., Prikhod’ko, D., Tarelkin, S., Kirilenko, D., Brunkov, P., Shakhmin, A., Khamidullin, K., Krasin, G., and Kovalev, M., Opt. Mater. Express, 2021, vol. 11, no. 11, p. 3792. https://doi.org/10.1364/OME.438023

    Article  CAS  ADS  Google Scholar 

  4. Kovalev, M., Nastulyavichus, A., Podlesnykh, I., Stsepuro, N., Pryakhina, V., Greshnyakov, E., Serdobintsev, A., Gritsenko, I., Khmelnitskii, R., and Kudryashov S., Materials, 2023, vol. 16, no. 12, p. 4439. https://doi.org/10.3390/ma16124439

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Ruchka, P., Hammer, S., Rockenhäuser, M., Albrecht, R., Drozella, J., Thiele, S., Giessen, H., and Langen, T., Quantum Sci. Technol., 2022, vol. 7, no. 4, p. 045011. https://doi.org/10.1088/2058-9565/ac796c

    Article  ADS  Google Scholar 

  6. Hwang, H., Kim, S.H., and Yang, S.M., Lab Chip, 2011, vol. 11, no. 1, p. 87. https://doi.org/10.1039/C0LC00125B

    Article  CAS  PubMed  Google Scholar 

  7. Shakhov, A.M., Astafiev, A.A., and Nadtochenko, V.A., JETP Lett., 2019, vol. 109, no. 5, p. 292. https://doi.org/10.1134/S0021364019050138

    Article  CAS  ADS  Google Scholar 

  8. Veiko, V.P., Sinev, D.A., Shakhno, E.A., Poleshchuk, A.G., Sametov, A.R., and Sedukhin, A.G., Comput. Opt., 2012, vol. 36, no. 4, p. 562.

    Google Scholar 

  9. Kesaev, V., Nastulyavichus, A., Kudryashov, S., Kovalev, M., Stsepuro, N, and Krasin, G., Opt. Mater. Express, 2021, vol. 11, no. 7, p. 1971. https://doi.org/10.1364/OME.428047

    Article  CAS  ADS  Google Scholar 

  10. Kotsiuba, Y., Hevko, I., Bellucci, S., and Gnilitskyi, I., Sci. Rep., 2021, vol. 11, no. 1, p. 16406. https://doi.org/10.1038/s41598-021-95665-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Vorobyev, A.Y., and Guo, C., Opt. Express, 2011, vol. 19, no. S5, p. A1031. https://doi.org/10.1364/OE.19.0A1031

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Taher, M.A., Ponnan, S., Prasad, H., Rao, D.N., and Naraharisetty, S.R.G., Nanotechnology, 2020, vol. 31, no. 17, p. 175301. https://doi.org/10.1088/1361-6528/ab674e

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Seleznev, L.V., Sinitsyn, D.V., Golosov, E.V., Kolobov, Y.R., and Ligachev, A.E., Appl. Phys. A, 2014, vol. 116, no. 3, p. 1133. https://doi.org/10.1007/s00339-013-8196-z

    Article  CAS  ADS  Google Scholar 

  14. Parmar, V., and Shin, Y.C., Appl. Surf. Sci., 2018, vol. 459, p. 86. https://doi.org/10.1016/j.apsusc.2018.07.189

    Article  CAS  ADS  Google Scholar 

  15. Ionin, A.A., Klimachev, Y.M., Kozlov, A.Y., Kudryashov, S.I., Ligachev, A.E., Makarov, S.V., Seleznev, L.V., Sinitsyn, D.V., Rudenko, A.A., and Khmelnitsky, R.A., Appl. Phys. B, 2013, vol. 111, no. 3, p. 419. https://doi.org/10.1007/s00340-013-5350-4

    Article  CAS  ADS  Google Scholar 

  16. Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A., and Friend, C.M., J. Appl. Phys., 2003, vol. 93, no. 5, p. 2626. https://doi.org/10.1063/1.1545159

    Article  CAS  ADS  Google Scholar 

  17. Kovalev, M., Podlesnykh, I., Nastulyavichus, A., Stsepuro, N., Mushkarina, I., Platonov, P., Terukov, E., Abolmasov, S., Dunaev, A., Akhmatkhanov, A., Shur, V., and Kudryashov S., Materials, 2023, vol. 16, no. 6, p. 2350. https://doi.org/10.3390/ma16062350

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Vorobyev, A.Y., and Guo, C., Laser Photonics Rev., 2013, vol. 7, no. 3, p. 385. https://doi.org/10.1002/lpor.201200017

    Article  CAS  ADS  Google Scholar 

  19. Bondarenko, A.G., Zakoldaev, R.A., and Ramos-Velasque, A., Opt. Spectrosc., 2022, vol. 130, no. 9, p. 1129. https://doi.org/10.21883/EOS.2022.09.54833.3833-22

    Article  Google Scholar 

  20. Xiong, J., Sarkar, D.K., and Chen, X.G., Appl. Surf. Sci., 2017, vol. 407, p. 361. https://doi.org/10.1016/j.apsusc.2017.02.203

    Article  CAS  ADS  Google Scholar 

  21. Kats, M.A., Blanchard, R., Genevet, P., and Capasso, F., Nat. Mater., 2013, vol. 12, no. 1, p. 20. https://doi.org/10.1038/nmat3443

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Zhao, J., and Wang, A., Appl. Phys. Lett., 2006, vol. 88, no. 24, p. 242102. https://doi.org/10.1063/1.2213927

    Article  CAS  ADS  Google Scholar 

  23. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P., Nat. Mater., 2005, vol. 4, no. 6, p. 455. https://doi.org/10.1038/nmat1387

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Filippova, O.V., Bessonov, R.V., and Avanesov, G.A., Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2014, vol. 11, no. 2, p. 165.

    Google Scholar 

  25. Korol’kov, V.P., Ionin, A.A., Kudryashov, S.I., Seleznev, L.V., Sinitsyn, D.V., Samsonov, R.V., Maslii, A.I., Medvedev, A.Zh., and Gol’denberg, B.G., Quantum Electron., 2011, vol. 41, no. 4, p. 387. https://doi.org/10.1070/qe2011v041n04abeh014464

    Article  ADS  Google Scholar 

  26. Fan, P., Bai, B., Zhong, M., Zhang, H., Long, J., Han, J., Wang, W., and Jin, G., ACS Nano, 2017, vol. 11, no. 7, p. 7401. https://doi.org/10.1021/acsnano.7b03673

    Article  CAS  PubMed  Google Scholar 

  27. Vorobyev, A.Y., and Guo, C., Appl. Phys. Lett., 2008, vol. 92, no. 4, p. 041914. https://doi.org/10.1063/1.2834902

    Article  CAS  ADS  Google Scholar 

  28. Vorobyev, A.Y., and Guo, C., Phys. Rev. B, 2005, vol. 72, no. 19, p. 195422. https://doi.org/10.1103/PhysRevB.72.195422

    Article  CAS  ADS  Google Scholar 

  29. Vorobyev, A.Y., and Guo, C., J. Appl. Phys., 2008, vol. 104, no. 5, p. 053516. https://doi.org/10.1063/1.2975989

    Article  CAS  ADS  Google Scholar 

  30. Boinovich, L.B., Modin, E.B., Sayfutdinova, A.R., Emelyanenko, K.A., Vasiliev, A.L., and Emelyanenko, A.M., ACS Nano, 2017, vol. 11, no. 10, p. 10113. https://doi.org/10.1021/acsnano.7b04634

    Article  CAS  PubMed  Google Scholar 

  31. Long, J., He, Z., Zhou, P., Xie, X., Zhou, C., Hong, W., and Hu, W., Adv. Mater. Interfaces, 2018, vol. 5, no. 13, p. 1800353. https://doi.org/10.1002/admi.201800353

    Article  CAS  Google Scholar 

  32. GOST (State Standard) 4784-74: Aluminum and Wrought Aluminum Alloys. Grades, Moscow: Izd. Standartov, 1997.

  33. Recent Advances in Renewable Energy, vol. 3: Renewable Energy Engineering: Solar, Wind, Biomass, Hydrogen and Geothermal Energy Systems, Rogdakis, E.D., and Koronaki, I.P., Eds., Amsterdam: Bentham, 2018, p. 1. https://doi.org/10.2174/9781681087191118030003

  34. Dunaev, A.Y., Zolotarevskii, Y.M., Morozova, S.P., Sapritskii, V.I., Fidanyan, G.S., and Erikova, A.A., Meas. Tech., 2019, vol. 61, no. 11, p. 1045. https://doi.org/10.1007/s11018-019-01547-8

    Article  Google Scholar 

  35. Li, N., Zhang, Y., Zhi, H., Tang, J., Shao, Y., Yang, L., Sun, T., Liu, H., and Xue, G., Chem. Eng. J., 2022, vol. 429, p. 132183. https://doi.org/10.1016/j.cej.2021.132183

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, the agreement no. 075-15-2023-612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Podlesnykh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, M.S., Podlesnykh, I.M., Krasin, G.K. et al. Creation of Light-Trapping Microstructures on the Surface of Metals under the Influence of Nanosecond Laser Pulses. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S116–S121 (2023). https://doi.org/10.3103/S106287382370449X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287382370449X

Keywords:

Navigation