Skip to main content
Log in

Nanostructured Emission Current Sources in Multiwire Proportional Chambers

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The mechanism of occurrence of spontaneous self-sustained currents in a multiwire proportional chamber from the experiment at the Large Hadron Collider has been considered. Atomic force microscopy, Rutherford backscattering, and Raman spectroscopy on the copper foil of the chamber cathode revealed the formation of nanocarbon structures and their fluorinated compounds, which are well known as low-threshold sources of field emission of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. The LHCb Collab., J. Instrum., 2008, vol. 3, p. S08005.

    Google Scholar 

  2. Albicocco, F.P., Anderlini, L., Anelli, M., et al., J. Instrum., 2019, vol. 14, p. P11031.

    Article  Google Scholar 

  3. Gavrilov, G.E., Maev, O.E., Maisuzenko, D.A., et al., Phys. At. Nucl., 2019, vol. 82, no. 9, p. 1273.

    Article  Google Scholar 

  4. Eidelman, E.D. and Arkhipov, A.V., Phys.–Usp., 2020, vol. 63, no. 7, p. 648.

    Article  ADS  Google Scholar 

  5. Gavrilova, G.E., Buzoverya, M.E., Karpov, I.A., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 8, p. 956.

    Article  Google Scholar 

  6. Buzoverya, M.E., Gavrilov, G.E., and Maev, O.E., Tech. Phys., 2021, vol. 66, no. 2, p. 356.

    Article  Google Scholar 

  7. Hurley, R.E. and Dooley, P.J., J. Phys. D: Appl. Phys., 1979, vol. 12, p. 2229.

    Article  ADS  Google Scholar 

  8. Kostogrud, I.A., Trusov, K.V., and Smovzh, D.V., Adv. Mater. Interfaces, 2016, vol. 3, p. 1500823. https://doi.org/10.1002/admi.201500823

    Article  Google Scholar 

  9. Krel, S.I., Arkhipov, A.V., Gabdullin, P.G., et al., Fullerenes, Nanotubes Carbon Nanostruct., 2012, vol. 20, nos. 4–7, p. 468.

    Article  ADS  Google Scholar 

  10. Wang, B., Wang, J., and Zhu, J., ACS Nano, 2014, vol. 8, no. 2, p. 1862.

    Article  Google Scholar 

  11. Nemanich, R.J. and Solin, S.A., Phys. Rev. B, 1979, vol. 20, no. 2, p. 392.

    Article  ADS  Google Scholar 

  12. Obraztsov, A.N., Pavlovsky, I.Yu., and Volkov, A.P., J. Vac. Sci. Technol., B, 1999, vol. 17, p. 674. https://doi.org/10.1116/1.590616

    Article  Google Scholar 

  13. Neustroev, E.P., Nogovitcyna, M.V., Popov, V.I., et al., Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 5, p. 763.

    Article  Google Scholar 

  14. Metelkin, E.V., Ryazanov, A.I., and Semenov, E.V., J. Exp. Theor. Phys., 2008, vol. 107, p. 394.

    Article  ADS  Google Scholar 

  15. Antonova, I.V., Kotin, I.A., Kurkina, I.I., et al., J. Mater. Eng. Perform., 2017, vol. 6, no. 5, p. 1000379.

    Google Scholar 

  16. Antonova, I.V., Shojaei, S., Sattari-Esfahlan, S.M., et al., Appl. Phys. Lett., 2017, vol. 111, no. 4, p. 043108.

    Article  ADS  Google Scholar 

  17. Fowler, H. and Nordheim, L., Proc. R. Soc. London, Ser. A, 1928, vol. 119, p. 173.

    Article  ADS  Google Scholar 

  18. Arkhipov, A.V., Eidelman, E.D., Zhurkin, A.M., Osipov, V.S., and Gabdullin, P.G., Fullerenes, Nanotubes Carbon Nanostruct., 2020, vol. 28, no. 4, p. 286.

    Article  ADS  Google Scholar 

  19. Kurkina, I.I., Antonova, I.V., Nebogatikova, N.A., et al., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 095303.

    Article  ADS  Google Scholar 

  20. Grigor’ev, F.I., Plazmokhimicheskoe i ionno-khimicheskoe travlenie v tekhnologii mikroelektroniki. Uchebnoe posobie (Plasma-Chemical and Ion-Chemical Etching in Microelectronics Technology: A Textbook), Moscow: Mosk. Gos. Univ. Elektron. Mat., 2003.

Download references

ACKNOWLEDGMENTS

We are grateful to the researchers of the National Scientific Research Institute of Experimental Physics (Sarov, Russia). They were deeply engaged in all stages of sample investigation. We gratefully acknowledge Dr. Konstantin N. Ermakov, leading researcher at the Petersburg Nuclear Physics Institute, for discussions of our paper.

Funding

This research was supported by the RF Ministry of Science and Higher Education within an agreement no. 075-10-2021-115 of October 13, 2021 (internal no. 15.SIN.21.0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Gavrilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, A.A., Buzoverya, M.E., Karpov, I.A. et al. Nanostructured Emission Current Sources in Multiwire Proportional Chambers. Bull. Russ. Acad. Sci. Phys. 87, 1737–1745 (2023). https://doi.org/10.3103/S1062873823703999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703999

Keywords:

Navigation