Skip to main content
Log in

Optical Pumping of Rubidium Isotopes with the Radiation of a Cr3+:BeAl2O4 Laser

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The authors consider the use of a Cr3+:BeAl2O4 laser operating in the mode of free generation as a source of radiation for the optical pumping of vapors of rubidium alkali metal. The use of dispersive elements in the composition of the laser resonator allows smooth tuning of the radiation and generation at wavelengths corresponding to lines D1 and D2 of isotopes 85Rb and 87Rb. The optical pumping of rubidium isotopes using laser radiation with wavelengths of 795 and 780 nm, respectively, is performed experimentally. The fluorescence of the isotopes is demonstrated. The use of tunable wavelength laser generation in the spin-exchange optical pumping of noble gases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Grigor’ev, G.Yu. and Nabiev, Sh.Sh., Russ. J. Phys. Chem. B, 2018, vol. 12, p. 363.

    Article  Google Scholar 

  2. Panayiotis, N., Coffey, A.M., Ranta, K., et al., J. Phys. Chem. B, 2014, vol. 118, no. 18, p. 4809.

    Article  Google Scholar 

  3. Virgincar, R.S., Nouls, J.C., Wang, Z., et al., Sci. Rep., 2020, vol. 10, p. 7385.

    Article  ADS  Google Scholar 

  4. Albert, M.S., Catesf, G.D., Driehuyst, B., et al., Lett. Nat., 1994, vol. 370, p. 199.

    Article  Google Scholar 

  5. Roos, J., Mcadams, H.P., Kaushik, S.S., et al., Magn. Res. Imaging Clin. North Am., 2015, vol. 23, no. 2, p. 217.

    Article  Google Scholar 

  6. Gaede, H.C., Song, Y.Q., Taylor, R.E., et al., Appl. Magn. Res., 1995, vol. 8, p. 373.

    Article  Google Scholar 

  7. Grigoriev, G.Y. and Lagutin, A.S., Tech. Phys., 2022, vol. 67, no. 9, p. 1089.

    Article  Google Scholar 

  8. Happer, W., Miron, E., Schaefer, S., et al., Phys. Rev. A, 1984, vol. 29, p. 3092.

    Article  ADS  Google Scholar 

  9. Appelt, S., Ben-Amar, BarangaA., Erickson, C., et al., Phys. Rev. A, 1998, vol. 58, no. 2, p. 1412.

    Article  ADS  Google Scholar 

  10. Kelley, M. and Branca, R., Appl. Phys., 2021, vol. 129, p. 154901.

    Article  Google Scholar 

  11. Walker, T. and Happer, W., Rev. Mod. Phys., 1997, vol. 69, no. 2, p. 629.

    Article  ADS  Google Scholar 

  12. Driehuys, B. Cates, G.D., et al., Appl. Phys. Lett., 1996, vol. 69, p. 1668.

    Article  ADS  Google Scholar 

  13. Nikolaou, P., Whiting, N., Eschmann, N.A., et al., J. Magn. Res., 2009, vol. 197, p. 249.

    Article  ADS  Google Scholar 

  14. Demkin, V., Demkin, A., and Shadrin, M., Fotonika, 2012, no. 3, p. 33.

  15. Siddons, P., Adams, C.S., Ge, C., and Hughes, I.G., J. Phys. B, 2019, vol. 41, no. 15, p. 155004.

    ADS  Google Scholar 

  16. Banerjee, A., Das, D., and Natarajan, V., Europhys. Lett., 2004, vol. 65, no. 2, p. 172.

    Article  ADS  Google Scholar 

  17. Volodin, B.L., Dolgy, S.V., Melnik, E.D., and Downs, E., Opt. Lett., 2004, vol. 29, no. 16, p. 1891.

    Article  ADS  Google Scholar 

  18. Whiting, N., Nikolaou, P., Eschmann, N.A., et al., Appl. Phys. B, 2012, vol. 106, no. 4, p. 775.

    Article  ADS  Google Scholar 

  19. Antipov, A.A., Putilov, A.G., Osipov, A.V., and Shepelev, A.E., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, p. 1359.

    Article  Google Scholar 

  20. Putilov, A.G., Antipov, A.A., Shepelev, A.E., et al., J. Phys.: Conf. Ser., 2021, vol. 1822, p. 012016.

    Google Scholar 

  21. Putilov, A.G., Antipov, A.A., Shepelev, A.E., et al., J. Phys.: Conf. Ser., 2019, vol. 1331, p. 012016.

    Google Scholar 

  22. https://steck.us/alkalidata/rubidium85numbers.pdf.

  23. https://steck.us/alkalidata/rubidium87numbers.pdf.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-10022. It was performed as part of a government contract with the Federal Research Center “Crystallography and Photonics,” for the development of laser sources. Work was done at the Interregional Multifunctional and Interdisciplinary Resource Center for Promising and Competitive Technologies in Areas of the Development and Industrial Implementation of Russian Achievements in the Field of Nanotechnologies, agreement no. 075-15-2021-692 of August 5, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Antipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, A.A., Putilov, A.G. & Shepelev, A.E. Optical Pumping of Rubidium Isotopes with the Radiation of a Cr3+:BeAl2O4 Laser. Bull. Russ. Acad. Sci. Phys. 87, 1675–1679 (2023). https://doi.org/10.3103/S1062873823703872

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703872

Navigation