Skip to main content
Log in

The Problem of Describing Modes of Relaxation in Dielectric Spectroscopy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The problem of choosing a model for the description of broad absorption–dispersion relaxation bands in spectra of the dielectric response of substances is discussed. An example of overcoming the difficulty of describing dielectric spectra of liquid water in which the Debye relaxator is replaced by the overdamped Lorentzian oscillator is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kremer, F. and Schönhals, A., Broadband Dielectric Spectroscopy, Berlin: Springer, 2003.

    Book  Google Scholar 

  2. Kaatze, U., Meas. Sci. Technol., 2013, vol. 24, no. 1, p. 012005.

    Article  ADS  Google Scholar 

  3. Dissado, L., in Springer Handbook of Electronic and Photonic Materials, Cham: Springer, 2017, p. 219.

    Google Scholar 

  4. Woodward, W.H.H., in Broadband Dielectric Spectroscopy: A Modern Analytical Technique, Washington, DC: Am. Chem. Soc., 2021, p. 3.

    Book  Google Scholar 

  5. Fröhlich, H., Trans. Faraday Soc., 1946, vol. 42, p. A003.

    Article  Google Scholar 

  6. Cochran, W., Adv. Phys., 1960, vol. 9, no. 36, p. 387.

    Article  ADS  Google Scholar 

  7. Huber, D.L. and Van Vleck, J.H., Rev. Mod. Phys., 1966, vol. 38, no. 1, p. 187.

    Article  ADS  Google Scholar 

  8. Silverman, B.D., Phys. Rev. B, 1974, vol. 9, no. 1, p. 203.

    Article  ADS  Google Scholar 

  9. Barker, A.S., Jr., Phys. Rev. B, 1975, vol. 12, no. 10, p. 4071.

    Article  ADS  Google Scholar 

  10. Dieterich, W., Fulde, P., and Peschel, I., Adv. Phys., 1980, vol. 29, no. 3, p. 527.

    Article  ADS  Google Scholar 

  11. Jonscher, A.K., J. Phys. D, 1999, vol. 32, no. 14, p. R57.

    Article  ADS  Google Scholar 

  12. Dyre, J.C. and Schrøder, T.B., Rev. Mod. Phys., 2000, vol. 72, no. 3, p. 873.

    Article  ADS  Google Scholar 

  13. Buixaderas, E., Kamba, S., and Petzelt, J., Ferroelectrics, 2004, vol. 308, no. 1, p. 131.

    Article  ADS  Google Scholar 

  14. Petzelt, J., Kozlov, G.V., and Volkov, A.A., Ferroelectrics, 1987, vol. 73, no. 1, p. 101.

    Article  ADS  Google Scholar 

  15. Kozlov, G. and Volkov, A., Top. Appl. Phys., 1998, vol. 74, p. 51.

    Article  Google Scholar 

  16. Volkov, A.A. and Prokhorov, A.S., Radiophys. Quantum Electron., 2003, vol. 46, nos. 8–9, p. 657.

    Article  ADS  Google Scholar 

  17. Nielsen, O.F., Annu. Rep. Prog. Chem. C, 1993, vol. 90, p. 3.

    Article  Google Scholar 

  18. Bellissent-Funel, M.-C. and Teixeira, J., J. Mol. Struct., 1991, vol. 250, nos. 2–4, p. 213.

    Article  ADS  Google Scholar 

  19. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 8: Electrodynamics of Continuous Media, Oxford: Pergamon, 1984, 2nd ed.

  20. Kaatze, U. and Feldman, Y., Meas. Sci. Technol., 2006, vol. 17, no. 2, p. R17.

    Article  ADS  Google Scholar 

  21. Turov, E.A., Material’nye uravneniya elektrodinamiki (Material Equations of Electrodynamics), Moscow: Nauka, 1983.

  22. Elton, D.C., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 28, p. 18739.

    Article  Google Scholar 

  23. Shiraga, K., Tanaka, K., Arikawa, T., et al., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 41, p. 26200.

    Article  Google Scholar 

  24. Del Valle, J.C., Aragó, C., Marqués, M.I., and Gonzalo, J.A., Ferroelectrics, 2014, vol. 466, no. 1, p. 166.

    Article  ADS  Google Scholar 

  25. Atkins, P. and de Paula, J., Physical Chemistry, New York: Oxford Univ. Press, 2006, 8th ed.

    Google Scholar 

  26. Ellison, W.J., J. Phys. Chem. Ref. Data, 2007, vol. 36, no. 1, p. 1.

    Article  ADS  Google Scholar 

  27. Querry, M.R., Wieliczka, D.M., Segelstein, D.J., in Handbook of Optical Constants of Solids II, San Diego: Academic, 1998, p. 1059.

    Google Scholar 

  28. Vasin, A.A. and Volkov, A.A., Tech. Phys., 2020, vol. 65, no. 9, p. 1411.

    Article  Google Scholar 

  29. Volkov, A.A. and Chuchupal, S.V., J. Mol. Liq., 2022, vol. 365, p. 120044.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chuchupal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.A., Chuchupal, S.V. The Problem of Describing Modes of Relaxation in Dielectric Spectroscopy. Bull. Russ. Acad. Sci. Phys. 87, 1498–1501 (2023). https://doi.org/10.3103/S1062873823703562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703562

Navigation