Skip to main content
Log in

Generating Direct Current in a Dirac Crystal in the Field of a Wave Polarized by a Lissajous Figure

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The constant relaxation time approximation is used to calculate the component of constant current density in a Dirac crystal resulring from the alternating electric field of a wave polarized by a Lissajous figure. The amplitude and frequency characteristics of direct current are analyzed for different frequency ratios. Ways of applying the studied effect are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bykov, A.Y., Murzina, T.V., Rybin, M.G., et al., Phys. Rev. B, 2004, vol. 85, p. 121413(R).

    Article  ADS  Google Scholar 

  2. Hong, S.-Y., Dadap, J.I., Petrone, N., et al., Phys. Rev. X, 2013, vol. 3, p. 021014.

    Google Scholar 

  3. An, Y.Q., Rowe, J.E., Dougherty, D.B., et al., Phys. Rev. B, 2014, vol. 89, p. 115310.

    Article  ADS  Google Scholar 

  4. Lin, K.-H., Weng, S.-W., Lyu, P.-W., et al., Appl. Phys. Lett., 2014, vol. 105, p. 151605.

    Article  ADS  Google Scholar 

  5. Gu, T., Petrone, N., McMillan, J.F., et al., Nat. Photonics, 2012, vol. 6, p. 554.

    Article  ADS  Google Scholar 

  6. Zhang, H., Virally, S., Bao, Q.L., et al., Opt. Lett., 2012, vol. 37, p. 1856.

    Article  ADS  Google Scholar 

  7. Vermeulen, N., Castello-Lurbe, D., Cheng, J.L., et al., Phys. Rev. Appl., 2016, vol. 6, p. 044006.

    Article  ADS  Google Scholar 

  8. Unterrainer, K., Keay, B.J., Wanke, M.C., et al., Phys. Rev. Lett., 1996, vol. 76, p. 2973.

    Article  ADS  Google Scholar 

  9. Mikhailov, S.A., Europhys. Lett., 2007, vol. 79, p. 27002.

    Article  ADS  Google Scholar 

  10. Mikhailov, S.A. and Ziegler, K., J. Phys.: Condens. Matter, 2008, vol. 20, p. 384204.

    ADS  Google Scholar 

  11. Zav’yalov, D.V., Konchenkov, V.I., Kryuchkov, S.V., Phys. Solid State, 2009, vol. 51, p. 2157.

    Article  ADS  Google Scholar 

  12. Peres, N.M.R., Bludov, Y.V., Santos, J.E., et al., Phys. Rev. B, 2014, vol. 90, p. 125425.

    Article  ADS  Google Scholar 

  13. Shorokhov, A.V., Pyataev, M.A., Khvastunov, N.N., et al., JETP Lett., 2015, vol. 100, p. 766.

    Article  ADS  Google Scholar 

  14. Mikhailov, S.A., Phys. Rev. B, 2017, vol. 95, p. 085432.

    Article  ADS  Google Scholar 

  15. Badicova, P.V., Glazov, S.Y., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 12, p. 1443.

    Article  Google Scholar 

  16. Badikova, P.V., Glazov, S.Y., Syrodoev, G.A., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 1, p. 30.

    Article  MathSciNet  Google Scholar 

  17. Kryuchkov, S.V., Kukhar, E.I., and Zav’yalov, D.V., Phys. E (Amsterdam, Neth.), 2013, vol. 53, p. 124.

    Google Scholar 

  18. Kryuchkov, S.V., Kukhar, E.I., and Zav’yalov, D.V., Phys. Wave Phenom., 2013, vol. 21, p. 207.

    Article  ADS  Google Scholar 

  19. Cheng, J.L., Vermeulen, N., and Sipe, J.E., Phys. Rev. B, 2015, vol. 91, p. 235320.

    Article  ADS  Google Scholar 

  20. Cheng, J.L., Vermeulen, N., and Sipe, J.E., Sci. Rep., 2017, vol. 7, p. 43843.

    Article  ADS  Google Scholar 

  21. Zav’yalov, D.V., Kryuchkov, S.V., Marchuk, E.V., Tech. Phys. Lett., 2008, vol. 34, p. 915.

    Article  ADS  Google Scholar 

  22. Kryuchkov, S.V., Kukhar, E.I., Yakovenko, V.A., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 12, p. 1679.

    Article  Google Scholar 

  23. Kukhar, E.I., Kryuchkov, S.V., Ionkina, E.S., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 90.

    Article  Google Scholar 

  24. Khonina, S.N., Ustinov, A.V., and Porfirev, A.P., Opt. Lett., 2020, vol. 45, p. 4112.

    Article  ADS  Google Scholar 

  25. Khonina, S.N., Degtyarev, S.A., Ustinov, A.V., et al., Opt. Express, 2021, vol. 29.

  26. Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., et al., Nat. Mater., 2007, vol. 6, p. 770.

    Article  ADS  Google Scholar 

  27. Mattausch, A. and Pankratov, O., Phys. Rev. Lett., 2007, vol. 99.

  28. Novikov, D.S., Phys. Rev. B, 2007, vol. 76, p. 245435.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the RF Ministry of Science and Higher Educationwithin the framework of a state assignment (project “Propagation and Interaction of Solitary Waves in Nanostructures Based on Dirac Materials”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kukhar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryuchkov, S.V., Kukhar, E.I. & Tarasov, V.V. Generating Direct Current in a Dirac Crystal in the Field of a Wave Polarized by a Lissajous Figure. Bull. Russ. Acad. Sci. Phys. 87, 1493–1497 (2023). https://doi.org/10.3103/S1062873823703550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703550

Navigation