Skip to main content
Log in

Effect of Prolonged Annealing on the Morphology and Optical Properties of ZnO Films Produced via Magnetron Sputtering

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The authors describe the effect the duration of annealing has on the structural and optical properties of ZnO films formed from Zn films obtained via magnetron sputtering with subsequent oxidation in air. Thermal oxidation in air is performed for 7 and 24 h in a programmable muffle furnace at T = 750°C. A change in the structure of the film’s surface is found that depends on the period of annealing of the Zn film and the substrate material. The change is apparent in the optical properties of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Özgür, Ü., Alivov, Ya.I., Liu, C., et al., J. Appl. Phys., 2005, vol. 98, p. 041301.

    Article  ADS  Google Scholar 

  2. Morkoç, H. and Özgür, Ü., Zinc Oxide: Fundamentals, Materials and Device Technology, Weinheim: Wiley, 2009.

    Book  Google Scholar 

  3. Singh, A. and Vishwakarma, H.L., IOSR J. Appl. Phys., 2014, vol. 6, no. 2, p. 28.

    Google Scholar 

  4. Özgür, Ü., Hofstetter, D., and Morkoç, H., Proc. IEEE, 2010, vol. 98, no. 7, p. 1255.

    Article  Google Scholar 

  5. Rashmi, R.K., Deepak, P., and Saurabh, K.P., Res. Dev. Mater. Sci., vol. 3, no. 3, p. 265.

  6. Ellmer, K., Klein, A., and Rech, B., Transparent Conductive Zinc Oxide, Springer Series in Materials Science, vol. 104, Heidelberg: Springer, 2008.

  7. Parihar, V., Raja, M., and Paulose, R., Rev. Adv. Mater. Sci., 2018, vol. 53, p. 119.

    Article  Google Scholar 

  8. Janotti, A. and Van de Walle, C.G., Rep. Prog. Phys., 2009, vol. 72, p. 126501.

    Article  ADS  Google Scholar 

  9. Kulkarni, S.S. and Shirsat, M.D., Int. J. Adv. Res. Phys. Sci., 2015, vol. 2, no. 1, p. 14.

    Google Scholar 

  10. Nenavathu, B.P., Sharma, A., and Dutta, R.K., J. Water Environ. Nanotechnol., 2018, vol. 3, no. 4, p. 289.

    Google Scholar 

  11. Pranav, Y.D., Kartik, H.P., Kamlesh, V.C., et al., Proc. Technol., 2016, vol. 23, p. 328.

    Article  Google Scholar 

  12. Damiani, L.R. and Mansano, R.D., J. Phys.: Conf. Ser., 2012, vol. 370, p. 012019.

    Google Scholar 

  13. Kuz’mina, A.S., Kuz’mina, M.Yu., and Kuz’min, M.P., Mater. Sci. Forum, 2019, vol. 989, no. 10, p. 210.

    Article  Google Scholar 

  14. Balela, M.D.L., Pelicano, C.M.O., Ty, J.D., and Yanagi, H., Opt. Quantum Electron., 2017, vol. 49, no. 3, p. 11.

    Article  Google Scholar 

  15. Hasnidawani, J.N., Azlina, H.N., Norita, H., et al., Procedia Chem., 2016, vol. 19, p. 211.

    Article  Google Scholar 

  16. Abdullach, K.A., Awad, S., Zaraket, J., and Salame, C., Energy Procedia, 2017, vol. 119, p. 565.

    Article  Google Scholar 

  17. Fouad, O.A., Ismail, A.A., Zaki, Z.I., and Mohamed, R.M., Appl. Catal., B, 2006, vol. 62, p. 144.

    Article  Google Scholar 

  18. Hassan, N.K. and Hashim, M.R., Sains Malays., 2013, vol. 42, no. 2, p. 193.

    Google Scholar 

  19. Dikovska, A.Og., Atanasov, P.A., Vasilev, C., et al., J. Optoelectron. Adv. Mater., 2005, vol. 7, no. 3, p. 1329.

    Google Scholar 

  20. Vincze, A., Bruncko, J., Michalka, M., and Figura, D., Centr. Eur. J. Phys., 2007, vol. 5, no. 3, p. 385.

    ADS  Google Scholar 

  21. John, A., Ko, H.-U., Kim, D.-G., and Kim, J., Cellulose, 2011, vol. 18, p. 675.

    Article  Google Scholar 

  22. Habibi, R., Daryan, J.T., and Rashidi, A.M., J. Exp. Nanosci., 2009, vol. 4, no. 1, p. 35.

    Article  Google Scholar 

  23. Feng, T.-H. and Xia, X.-C., Opt. Mater. Express, 2016, vol. 6, p. 3735.

    ADS  Google Scholar 

  24. Kelly, P.J. and Arnell, R.D., Vacuum, 2000, vol. 56, p. 159.

    Article  ADS  Google Scholar 

  25. Rahman, F., Opt. Eng., 2019, vol. 58, no. 1, p. 010901.

    ADS  Google Scholar 

  26. Guan, N., Dai, X., Babichev, A.V., et al., Chem. Sci., 2017, vol. 8, p. 7904.

    Article  Google Scholar 

  27. Park, G.C., Hwang, S.M., Lee, S.M., et al., Sci. Rep., 2015, vol. 5, p. 10410.

    Article  ADS  Google Scholar 

  28. Macaluso, R., Lullo, G., Crupi, I., et al., Electronics, 2020, vol. 9, p. 991.

    Article  Google Scholar 

  29. Baratto, C., Kumar, R., Comini, E., et al., Opt. Express, 2015, vol. 23, no. 15, p. 18937.

    Article  ADS  Google Scholar 

  30. Rauwel, P., Salumaa, M., Aasna, A., et al., J. Nanomater., 2016, vol. 2016, p. 5320625.

    Article  Google Scholar 

  31. Rodnyi, P., Chernenko, K., Klimova, O., et al., Radiat. Meas., 2016, vol. 90, p. 136.

    Article  Google Scholar 

  32. Rodnyi, P.A., Chernenko, K.A., and Venevtsev, I.D., Opt. Spectrosc., 2018, vol. 125, no. 3, p. 372.

    Article  ADS  Google Scholar 

  33. Janotti, A. and Van de Walle, C.G., Rep. Progr. Phys., 2009, vol. 72, p. 126501.

    Article  ADS  Google Scholar 

  34. Zhang, M., Averseng, F., Krafft, J.-M., et al., J. Phys. Chem. C, 2020, vol. 124, no. 23, p. 12696.

    Article  Google Scholar 

  35. Guo, H.-L., Zhu, Q., Wu, X.-L., et al., Nanoscale, 2015, vol. 7, p. 7216.

    Article  ADS  Google Scholar 

  36. Chen, L., Zhai, B., and Huang, Y.M., Catalysts, 2020, vol. 10, p. 1163.

    Article  Google Scholar 

  37. Wang, J., Xiang, L., and Komarneni, S., Ceram. Int., 2018, vol. 44, no. 7, p. 7357.

    Article  Google Scholar 

  38. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964.

    Book  Google Scholar 

  39. Hauffe, K., Reaktionen in und an festen Stoffen, Berlin: Springer, 1955.

    Book  Google Scholar 

  40. Moore, W.L. and Williams, E.L., Discuss. Faraday Soc., 1959, vol. 28, p. 86.

    Article  Google Scholar 

  41. Leonov, N.B., Komissarov, M.D., Parfenov, P.S., et al., Appl. Phys. A, 2022, vol. 128, p. 665.

    Article  ADS  Google Scholar 

  42. Tomaev, V.V., Polischuk, V.A., Vartanyan, T.A., et al., Opt. Spectrosc., 2021, vol. 129, no. 9, p. 1033.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tomaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Polishchuk, V.A., Leonov, N.B. et al. Effect of Prolonged Annealing on the Morphology and Optical Properties of ZnO Films Produced via Magnetron Sputtering. Bull. Russ. Acad. Sci. Phys. 87, 1478–1482 (2023). https://doi.org/10.3103/S1062873823703525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703525

Navigation