Skip to main content
Log in

Characterizing Vertically Aligned Carbon Nanotubes by Piezoresponse Force Microscopy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The piezoelectric properties of vertically aligned carbon nanotubes (CNTs) are characterized by piezoresponse force microscopy, and their dependence on the concentration of the doping impurity of nitrogen is established. It is shown that carbon nanotubes have predominantly longitudinal polarization, due to the direction of the dipole moment in the bamboo-like bridges of the nanotubes. It is found that lowering the temperature of growth from 690 to 645°C raises of piezoelectric strain coefficient of the carbon nanotubes from 4.5 to 21.2 pm/V. Results in this work can be used in developing energy-efficient nanopiezotronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wang, Z.L., Adv. Mater., 2012, vol. 24, no. 34, p. 4632.

    Article  Google Scholar 

  2. Wang, Z.L., Adv. Mater., 2007, vol. 19, no. 6, p. 889.

    Article  Google Scholar 

  3. Gao, Y. and Wang, Z.L., Nano Lett., 2007, vol. 7, no. 8, p. 2499.

    Article  ADS  Google Scholar 

  4. Hu, Y. and Wang, Z.L., Nano Energy, 2014, vol. 14, p. 3.

    Article  Google Scholar 

  5. Wang, Z.L., Nano Today, 2010, vol. 5, no. 6, p. 540.

    Article  Google Scholar 

  6. He, J.H., Hsin, C.L., Liu, J., et al., Adv. Mater., 2007, vol. 19, no. 6, p. 781.

    Article  Google Scholar 

  7. Das, M.S., Mohapatra, P.C., Aria, A.I., et al., Adv. Sci., 2021, vol. 8, no. 17, p. 2100864.

    Article  Google Scholar 

  8. Choi, I., Lee, S.-J., Kim, J.C., et al., Appl. Surf. Sci., 2020, vol. 511, p. 145614.

    Article  Google Scholar 

  9. Wang, X., Tian, H., Xie, W., et al., NPG Asia Mater., 2015, vol. 7, no. 1, p. e154.

    Article  Google Scholar 

  10. da Cunha, Rodrigues, G., Zelenovskiy, P., Romanyuk, K., et al., Nat. Commun., 2015, vol. 6, p. 7572.

    Article  ADS  Google Scholar 

  11. Bistoni, O., Barone, P., Cappelluti, E., et al., 2D Mater., 2019, vol. 6, no. 4, p. 045015.

  12. Duggen, L., Willatzen, M., and Wang, Z.L., J. Phys. Chem. C, 2018, vol. 122, no. 36, p. 20581.

    Article  Google Scholar 

  13. Chandratre, S. and Sharma, P., Appl. Phys. Lett., 2012, vol. 100, no. 2, p. 023114.

    Article  ADS  Google Scholar 

  14. Ong, M.T. and Reed, E.J., ACS Nano, 2012, vol. 6, no. 2, p. 1387.

    Article  Google Scholar 

  15. Il’ina, M.V., Il’in, O.I., Guryanov, A.V. et al, J. Mater. Chem. C, 2021, vol. 9, no. 18, p. 6014.

    Article  Google Scholar 

  16. Il’ina, M.V., Il’in, O., Osotova, O., et al., Carbon, 2022, vol. 190, p. 348.

    Article  Google Scholar 

  17. Il’ina, M.V., Osotova, O.I., Rudyk, N.N., et al., Diamond Relat. Mater., 2022, vol. 126, p. 109069.

    Article  ADS  Google Scholar 

  18. Il’ina, M.V., Soboleva, O.I., Rudyk, N.N., et al., J. Adv. Dielectr., 2022, vol. 12, p. 2241001.

    Article  ADS  Google Scholar 

  19. Il’ina, M.V., Il’in, O.I., and Smirnov, V.A., Atomic-Force Microscopy and Its Applications, Tański, T., Staszuk, M., Ziębowicz, B., Eds., London: IntechOpen, 2019, p. 49.

    Google Scholar 

  20. Il’ina, M.V., Ageev, O.A., Il’in, O.I., Kolomiitsev, A.S., et al., Nano-Mikrosist. Tekh., 2012, no. 3, p. 9.

  21. Il’ina, M.V., Il’in, O.I., Rudyk, N.N., et al., Nanomaterials, 2021, vol. 11, no. 11, p. 2912.

    Article  Google Scholar 

  22. Il’in, O.I., Il’ina, M.V., Rudyk, N.N., et al., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 1, p. 92.

    Google Scholar 

  23. Neumayer, S.M., Saremi, S., Martin, L.W., et al., J. Appl. Phys., 2020, vol. 128, no. 17, p. 171105.

    Article  ADS  Google Scholar 

  24. Il’in, O.I., Rudyk, N.N., Fedotov, A.A., et al., Nanomaterials, 2020, vol. 10, no. 3, p. 554.

    Article  Google Scholar 

  25. Louchev, O.A., Phys. Status Solidi A, 2002, vol. 193, no. 3, p. 585.

    Article  ADS  Google Scholar 

  26. Lee, W.J., Maiti, U.N., Lee, J.M., et al., Chem. Commun., 2014, vol. 50, no. 52, p. 6818.

    Article  Google Scholar 

  27. Yamada, Y., Kim, J., Matsuo, S., and Sato, S., Carbon, 2014, vol. 70, p. 59.

    Article  Google Scholar 

  28. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Carbon, 2018, vol. 132, p. 104.

    Article  Google Scholar 

  29. Arenal, R., Henrard, L., Roiban, L., et al., Nano Lett., 2014, vol. 14, no. 10, p. 5509.

    Article  ADS  Google Scholar 

  30. Kundalwal, S.I., Meguid, S.A., and Weng, G.J., Carbon, 2017, vol. 117, p. 462.

    Article  Google Scholar 

  31. Il’ina, M.V., Il’in, O.I., Osotova, O.I., et al., Nanobiotechnol. Rep., 2021, vol. 16, no. 6, p. 821.

    Article  Google Scholar 

  32. Il’ina, M.V., Il’in, O.I. Osotova, O.I., et al., Diamond Relat. Mater., 2022, vol. 123, p. 108858.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of State Task no. FENW-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Il’ina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, M.V., Soboleva, O.I., Polyvianova, M.R. et al. Characterizing Vertically Aligned Carbon Nanotubes by Piezoresponse Force Microscopy. Bull. Russ. Acad. Sci. Phys. 87, 1432–1437 (2023). https://doi.org/10.3103/S1062873823703446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703446

Navigation