Skip to main content
Log in

Regularities of the Formation of Fractal Structures on the Surface of Metallic Films of Different Thicknesses

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The surface morphology of nanosized copper and nickel films on mica has been studied on a scanning tunneling microscope. The height parameters and fractal dimension of the copper and nickel films of different thicknesses have been determined. Characteristic sizes of structural agglomerates for the copper and nickel films as functions of their thickness are reported. The choice of film thickness and synthesis conditions makes it possible to formulate recommendations for the development of technology for growing structures with a specified surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mwema, F.M., Akinlabi, E.T., Oladijo, O.P., et al., in Modern Manufacturing Processes, Amsterdam: Elsevier, 2020, p. 13.

    Google Scholar 

  2. Ţălu Ş., Yadav, R.P. Mittal, A.K., et al., Opt. Quantum Electron., 2017, vol. 49, no. 7, p. 256.

    Article  Google Scholar 

  3. Nikpasand, K., Elahi, S.M., Sari, A.H., and Boochani, A., Mater. Sci. Pol., 2020, vol. 38, no. 2, p. 328.

    Article  ADS  Google Scholar 

  4. Astinchap, B., Optik, 2019, vol. 178, p. 231.

    Article  ADS  Google Scholar 

  5. Martynenko, Y.V. and Nagel, M.Y., Nanotechnol. Russ., 2009, vol. 4, no. 9, p. 612.

    Article  Google Scholar 

  6. Korsukov, V.E., Butenko, P.N., Kadomtsev, A.G., et al., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 1, p. 58.

    Google Scholar 

  7. Karbivska, L., Karbivskii, V., Romansky, A., et al., Proc. 39th Int. Conf. on Electronics and Nanotechnology (ELNANO), Piscataway, 2019, p. 214.

  8. Markov, O.I., Khripunov, Yu.V., Emel’yanov, V.M., and Zhusubaliev, Zh.T., Izv. Yugozap. Gos. Univ., Ser. Tekh., Tekhnol., 2019, vol. 9, no. 1, p. 78.

    Google Scholar 

  9. Huang, C. and Yang, C.Z., Appl. Phys. Lett., 1999, vol. 74, no. 12, p. 1692.

    Article  ADS  Google Scholar 

  10. Cheng, W., Dong, S., and Wang, E., J. Phys. Chem. B, 2005, vol. 109, no. 41, p. 19213.

    Article  Google Scholar 

  11. Sdobnyakov, N.Yu., Antonov, A.S., and Ivanov, D.V., Morfologicheskie kharakteristiki i fraktal’nyi analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh (Morphological Characteristics and Fractal Analysis of Metal Films on Dielectric Surfaces), Tver: Tver. Gos. Univ., 2019.

  12. Sdobnyakov, N.Yu., Antonov, A.S., Ivanov, D.V., and Semenova, E.M., in Perspektivnye materialy i tekhnologii (Advanced Materials and Technologies), Minsk: Beloruss. Gos. Univ., 2021, p. 253.

  13. Ivanov, D.V., Antonov, A.S., Sdobnyakov, N.Yu., et al., Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater., 2019, no. 11, p. 138.

  14. Antonov, A.S., Sdobnyakov, N.Yu., Ivanov, D.V., et al., Khim. Fiz. Mezosk., 2017, vol. 19, no. 3, p. 473.

    Google Scholar 

  15. Ivanov, D.V., Antonov, A.S., Sdobnyakov, N.Yu., et al., Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater., 2018, no. 10, p. 291.

  16. Panin, A.V and Shunurov, A.R., Fiz. Mezomekh., 2000, vol. 3, no. 5, p. 101.

    Google Scholar 

  17. Feder, J., Fractals, New York: Plenum, 1988.

    Book  MATH  Google Scholar 

  18. Roldughin, V.I., Russ. Chem. Rev., 2003, vol. 72, p. 823.

    Article  ADS  Google Scholar 

  19. Samsonov, V.M., Kuznetsova, Y.V., and D’yakova, E.V., Tech. Phys., 2016, vol. 86, no. 2, p. 227.

    Article  Google Scholar 

  20. Ivanov, G.S. and Brylkin, Yu.V., Geom. Graf., 2016, vol. 4, no. 1, p. 4.

    Google Scholar 

  21. Brylkin, Yu.V., Kusov, A.L., and Florov, A.V., Izv. Kabardino-Balkar. Gos. Univ., 2014, vol. 4, no. 5, p. 86.

    Google Scholar 

  22. Belko, A.V., Nikitin, A.V., Strekal’, N.D., and German, A.E., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2009, vol. 3, p. 338.

    Article  Google Scholar 

  23. Wu, M.K. and Friedlander, S.K., J. Colloid Interface Sci., 1993, vol. 159, p. 246.

    Article  ADS  Google Scholar 

  24. Oh, C. and Sorensen, C.M., J. Colloid Interface Sci., 1997, vol. 193, p. 17.

    Article  ADS  Google Scholar 

  25. Tirado-Miranda, M., Schmitt, A., Callejas-Fernandez, J., et al., Langmuir, 2000, vol. 16, p. 7541.

    Article  Google Scholar 

  26. Wu, M.K. and Friedlander, S.K., J. Colloid Interface Sci., 1993, vol. 159, p. 246.

    Article  ADS  Google Scholar 

  27. Douketis, C., Wang, Z., Wang, Z., et al., Prog. Surf. Sci., 1995, vol. 50, nos. 1–4, p. 187.

    Article  ADS  Google Scholar 

  28. Zahn, W. and Zösch, A., Fresenius’ J. Anal. Chem., 1995, vol. 365, nos. 1–3, p. 168.

    Article  Google Scholar 

  29. Van Put, A., Vertes, A., Wegrzynek, D., et al., Fresenius’ J. Anal. Chem., 1994, vol. 350, nos. 7–9, p. 440.

    Article  Google Scholar 

  30. Mannelquist, A., Almquist, N., and Fredriksson, S., Appl. Phys. A, 1998, vol. 66, no. 1 (suppl.), p. S891

    Article  ADS  Google Scholar 

  31. Zahn, W. and Zösch, A., Fresenius’ J. Anal. Chem., 1997, vol. 358, nos. 1–2, p. 119.

    Article  Google Scholar 

  32. http://gwyddion.net.

  33. Ivanov, D.V., Vasil’ev, S.A., Sdobnyakov, N.Yu., et al., Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater., 2020, no. 12, p. 424.

  34. Makabe, A., Oshikawa, W., and Saitou, M., Trans. Jpn. Soc. Mech. Eng., vol. 67, no. 664, p. 1955.

  35. Torabi, M. and Dolati, A., Int. J. Surf. Sci. Eng., 2016, vol. 10, no. 5, p. 444.

    Article  Google Scholar 

  36. Kolokoltsev, V., Borovitskaya, I., Nikulin, V., et al., Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects, Tomsk, 2020, p. 971.

  37. Arman A., Ţălu, Ş., Luna, C., et al., J. Mater. Sci., 2015, vol. 26, p. 9630.

    Google Scholar 

  38. http://www.digitalsurf.com.

  39. Kuz’menko, A.P., Dint, N., Kuz’ko, A.E., et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2016, vol. 19, no. 3, p. 195.

    Google Scholar 

  40. Trusov, L.I. and Kholmyanskii, V.A., Ostrovkovye metallicheskie plenki (Island Metal Films), Moscow: Metallurgiya, 1973.

  41. Sdobnyakov, N.Yu. and Sokolov, D.N., Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp’yuternoe modelirovanie (Study of Thermodynamic and Structural Characteristics of Metal Nanoparticles during Melting and Crystallization: Theory and Computer Simulation), Tver: Tver. Gos. Univ., 2018.

  42. Sokolov, Yu.V. and Zheleznyĭ, V.S., Tech. Phys. Lett., 2003, vol. 29, no. 8, p. 627.

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. 0817-2023-0006 and within the State Assignment for the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Sdobnyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.V., Antonov, A.S., Kuz’min, N.B. et al. Regularities of the Formation of Fractal Structures on the Surface of Metallic Films of Different Thicknesses. Bull. Russ. Acad. Sci. Phys. 87, 1425–1431 (2023). https://doi.org/10.3103/S1062873823703434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703434

Navigation