Skip to main content
Log in

Multiorder and the Structural Mechanism of the LiRh2O4 Tetragonal Phase Formation

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Results are presented from a group-theoretical analysis of phase transitions in LiRh2O4. It is found that the critical irreducible representation inducing phase transitions and multiorder in this substance is eight-dimensional representation k11τ5 \(\left( {{{\Gamma}}_{3}^{ + }} \right)\) + k10τ2 (X4). It is shown that the multiorder and structural mechanism of the formation of the tetragonal phase of lithium rhodonite are related to displacements of oxygen atoms, the tilts of [RhO]6 octahedra, and the ordering of rhodium t2g orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. Irreducible representations are denoted using Kovalev’s system (with indication of the wave vector and number of the irreducible representation) [18]. The IR labels in brackets correspond to Miller and Love’s notation [19].

REFERENCES

  1. Canals, B. and Lacroix, C., Phys. Rev. Lett., 1998, vol. 80, p. 2933.

    Article  ADS  Google Scholar 

  2. Verwey, E.J.W., Nature, 1939, vol. 144, p. 327.

    Article  ADS  Google Scholar 

  3. Wright, J.P., Attfield, J.P., and Radaelli, P.G., Phys. Rev. Lett., 2001, vol. 87, p. 266401.

    Article  ADS  Google Scholar 

  4. Furubayashi, T., Matsumoto, T., Hagino, T., and Nagata, S., J. Phys. Soc. Jpn., 1994, vol. 63, p. 3333.

    Article  ADS  Google Scholar 

  5. Radaelli, P.G., Horibe, Y., Gutmann, M.J., et al., Nature, 2002, vol. 416, p. 155.

    Article  ADS  Google Scholar 

  6. Matsuno, K.I., Katsufuji, T., Shigeo Mori, S., et al., J. Phys. Soc. Jpn., 2001, vol. 70, p. 1456.

    Article  ADS  Google Scholar 

  7. Horibe, Y., Shingu, M., Kurushima, K., et al., Phys. Rev. Lett., 2006, vol. 96, p. 086406.

    Article  ADS  Google Scholar 

  8. Talanov, M.V., Shirokov, V.B., Avakyan, L.A., et al., Acta Crystallogr., Sect B, 2018, vol. 74, p. 337.

    Article  Google Scholar 

  9. Kondo, S., Johnston, D.C., Swenson, C.A., et al., Phys. Rev. Lett., 1997, vol. 78, p. 3729.

    Article  ADS  Google Scholar 

  10. Shiomi, M., Kojima, K., Katayama, N., et al., Phys. Rev. B, 2022, vol. 105, p. L041103.

    Article  ADS  Google Scholar 

  11. Nakatsu, Y., Sekiyama, A., Imada, S., et al., Phys. Rev. B, 2011, vol. 83, p. 115120.

    Article  ADS  Google Scholar 

  12. Knox, K.R., Abeykoon, A.M.M., Zheng, H., et al., Phys. Rev., B, 2013, vol. 88, p. 174114.

    Article  ADS  Google Scholar 

  13. Landau, L.D. and Lifshitz, E.M., Statistical Physics, Part 1, Oxford: Pergamon, 1980.

    MATH  Google Scholar 

  14. Sakhnenko, V.P., Talanov, V.M., and Chechin, G.M., Fiz. Met. Metalloved., 1986, vol. 62, p. 847.

    Google Scholar 

  15. Talanov, V.M. and Shirokov, V.B., Acta Cristallogr., Sect. A, 2014, vol. 70, p. 49.

    Google Scholar 

  16. Talanov, V.M. and Shirokov, V.B., Acta Cristallogr., Sect. A, 2012, vol. 68, p. 595.

    Google Scholar 

  17. Talanov, M.V. and Talanov, V.M., Ferroelectrics, 2019, vol. 543, p. 1.

    Article  ADS  Google Scholar 

  18. Kovalev, O.V., Stokes, H.T., and Hatch, D.M., Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations, Yverdon: Gordon and Breach, 1993.

    Google Scholar 

  19. Miller, S.C. and Love, W.F., Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, Boulder: Pruett, 1967.

    Google Scholar 

  20. Talanov, M.V., Acta Cristallogr., Sect. A, 2019, vol. 75, p. 379.

    Google Scholar 

  21. Talanov, M.V. and Talanov, V.M., Chem. Mater., 2021, vol. 33, p. 2706.

    Article  Google Scholar 

  22. Aizu, K., J. Phys. Soc. Jpn., 1969, vol. 27, p. 387.

    Article  ADS  Google Scholar 

  23. Gufan, Yu.M., Strukturnye fazovye perekhody (Structural Phase Transitions), Moscow: Nauka, 1982.

  24. Chandrasekhar, S., Liquid Crystals, London: Cambridge Univ. Press, 1977.

    Google Scholar 

  25. Sirotin, Yu.I. and Shaskol’skaya, M.P., Osnovy kristallofiziki (Fundamentals of Crystal Physics), Moscow: Nauka, 1975.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-22-00183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Talanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talanov, M.V., Shirokov, V.B., Talanov, V.M. et al. Multiorder and the Structural Mechanism of the LiRh2O4 Tetragonal Phase Formation. Bull. Russ. Acad. Sci. Phys. 87, 1263–1269 (2023). https://doi.org/10.3103/S1062873823703136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703136

Navigation