Skip to main content
Log in

Energy Spectrum of Gamma Rays from the Crab Nebula, According to Data from the TAIGA Astrophysical Complex

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

An analysis is performed of the spectrum of gamma rays from the Crab Nebula in the 4–100 TeV range of energies, obtained using data from two Atmospheric Cherenkov Telescopes that are part of the TAIGA complex. A way of selecting and restoring the energy of gamma rays is described that includes a procedure for restoring the energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. The LHAASO result has yet to be independently verified and should therefore be treated with caution.

REFERENCES

  1. Weekes, T.C., Cawley, M.F., Fegan, D.J., et al., Astrophys. J., 1989, vol. 342, p. 379.

    Article  ADS  Google Scholar 

  2. Amenomory, M., Bao, Y.W., Bi, X.J., et al., Phys. Rev. Lett., 2019, vol. 123, p. 051101.

    Article  ADS  Google Scholar 

  3. Abeysekara, A.U., Albert, A., Alfaro, R., et al., Phys. Rev. Lett., 2020, vol. 124, no. 2, p. 021102.

    Article  ADS  Google Scholar 

  4. Cao, Z., Aharonian, F.A., An, Q., et al., Nature, 2021, vol. 594, p. 33.

    Article  ADS  Google Scholar 

  5. Liu, R.-Y. and Wang, X.-Y., Astrophys. J., 2021, vol. 2, p. 221.

    Article  ADS  Google Scholar 

  6. Kuzmichev, L.A., Astapov, I.I., Bezyazeekov, P.A., et al., Phys. At. Nucl., 2018, vol. 81, no. 4, p. 497.

    Article  Google Scholar 

  7. Budnev, N., Astapov, I., Bezyazeekov, P., et al., J. Instrum., 2020, vol. 15, no. 9, p. C09031.

    Article  Google Scholar 

  8. Tluczykont, M., Hampf, D., Horns, D., et al., Astropart. Phys., 2014, vol. 56, p. 42.

    Article  ADS  Google Scholar 

  9. Kuzmichev, L. et al. (TAIGA Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A, 2020, vol. 952, p. 161830.

    Google Scholar 

  10. Sveshnikova, L.G., Astapov, I.I., Bezyazeekov, P.A., et al., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 8, p. 922.

    Article  Google Scholar 

  11. Lubsandorzhiev, N. et al. (TAIGA Collab.), Proc. 35th Int. Cosmic Ray Conference, Busan, 2017, p. 757.

  12. Budnev, N. et al. (TAIGA Collab.), Proc. 35th Int. Cosmic Ray Conference, Busan, 2017, p. 768.

  13. Fomin, V.P., Stepanian, A., Lamb, R., et al., Astropart. Phys., 1994, vol. 2, no. 2, p. 137.

    Article  ADS  Google Scholar 

  14. Zhurov, D., Gress, O., Sidorov, D., et al., J. Phys.: Conf. Ser., 2019, vol. 1181, p. 012045.

    Google Scholar 

  15. Hillas, A.M., Proc. 19th Int. Cosmic Ray Conference, La Jolla, 1985, vol. 3, p. 445.

  16. Grinyuk, A., Postnikov, E., and Sveshnikova, L., Phys. At. Nucl., 2020, vol. 83, p. 262.

    Article  Google Scholar 

  17. Budnev, N.M., Chiavassa, A., Gress, O.A., et al., Astropart. Phys., 2020, vol. 117.

  18. Lessard, R.W., Buckley, J.H., Connaughton, V., et al., Astropart. Phys., 2001, vol. 15, no. 1, p. 1.

    Article  ADS  Google Scholar 

  19. Li, T.-P. and Ma, Y.-Q., Astrophys. J., 1983, vol. 272, p. 317.

    Article  ADS  Google Scholar 

  20. Anykeyev, V.B., Spiridonov, A.A., and Zhigunov, V.P., Nucl. Instrum. Methods Phys. Res., Sect. A, 1991, vol. 303, p. 350.

    Google Scholar 

  21. Albert, J., Aliu, E., Anderhub, A., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 583, p. 494.

    Google Scholar 

  22. Kevin, M. et al. (VERITAS Collab.), Proc. 34th Int. Cosmic Ray Conference, Hague, 2015, p. 792.

  23. Aharonian, F. et al. (HESS Collab.), Astropart. Phys., 2011, vol. 34, p. 738.

    ADS  Google Scholar 

  24. Acciari, V.A. et al. (MAGIC Collab.), arXiv: 2001.09566v1, 2020.

  25. Aharonian, F. et al. (HEGRA Collab.), arXiv:astro-ph/0407118, 2004.

  26. Grinyuk, A., Postnikov, E., Volchugov, P., et al., Proc. Int. Cosmic Ray Conference, 2021, p. 713.

  27. Hofmann, W., Lampeit, W., Konopelko, H., and Krawczynski, H., Astropart. Phys., 2000, vol. 12, no. 4, p. 207.

    Article  ADS  Google Scholar 

  28. Krawczynski, H., Carter-Lewis, D., Duke, C., et al., Astropart. Phys., 2006, vol. 25, no. 6, p. 380.

    Article  ADS  Google Scholar 

  29. Prosin, V.V., Doctoral (Phys.–Math.) Dissertation, Moscow: Moscow State Univ., 2006.

Download references

Funding

This work was performed at the MSU-ISU Astrophysical Complex with the support from the RF Ministry of Science and Higher Education as part of State Tasks FZZE-2020-0017, FZZE-2020-0024, and FSUS-2020-0039, under agreement no. EB-075-15-2021-675, and from the Russian Science Foundation, project no. 19-72-20067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Sveshnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikova, L.G., Volchugov, P.A., Postnikov, E.B. et al. Energy Spectrum of Gamma Rays from the Crab Nebula, According to Data from the TAIGA Astrophysical Complex. Bull. Russ. Acad. Sci. Phys. 87, 904–909 (2023). https://doi.org/10.3103/S1062873823702738

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823702738

Navigation