Skip to main content
Log in

Interpretation of Fluxes of Cosmic-Ray Nuclei and Electrons within a Nonclassical Diffusion Model

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A new scenario of the formation of observed ultrahigh-energy cosmic-ray electron/positron and nuclei spectra is discussed within a nonclassical (superdiffusion) model of particle propagation in highly inhomogeneous interstellar and intergalactic media. It is shown that the proposed scenario provides a consistent description of data from highly precise satellite measurements, ground-based hybrid EAS arrays, and Cherenkov telescopes using the spectra of leptons and nuclei, and the mass composition of cosmic rays in the super- and ultrahigh ranges of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Aguilar, M. et al. (AMS-02 Collab.), Phys. Rev. Lett., 2013, vol. 110, p. 141102.

    Article  ADS  Google Scholar 

  2. Adriani, O. et al. (PALMELA Exp.), Nature, 2009, vol. 458, p. 607.

    Article  ADS  Google Scholar 

  3. Ackermann, M. et al. (Fermi-LAT Collab.), Phys. Rev. Lett., 2012, vol. 108, p. 011103.

    Article  ADS  Google Scholar 

  4. Ambrosi, G. et al. (DAMPE Collab.), Nature, 2017, vol. 552, p. 63.

    ADS  Google Scholar 

  5. Adriani, O. et al. (CALET Collab.), Phys. Rev. Lett., 2017, vol. 119, p. 181101.

    Article  ADS  Google Scholar 

  6. Aharonian, F. et al. (H.E.S.S. Collab.), Phys. Rev. Lett., 2008, vol. 101, p. 261104.

    Article  ADS  Google Scholar 

  7. Aab, A. et al. (Pierre Auger Collab.), Phys. Lett. B, 2016, vol. 762, p. 288.

    Article  ADS  Google Scholar 

  8. Lagutin, A.A., Nikulin, Yu.A., and Uchaikin, V.V., Nucl. Phys. B, Proc. Suppl., 2001, vol. 97, p. 267.

    Article  ADS  Google Scholar 

  9. Lagutin, A.A. and Uchaikin, V.V., Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 201, p. 212.

    Google Scholar 

  10. Hu, Y., Lazarian, A., and Xu, S., Mon. Not. R. Astron. Soc., 2022, vol. 512, p. 2111.

    Article  ADS  Google Scholar 

  11. Lagutin, A.A., Volkov, N.V., Kuzmin, A.S., and Tyumentsev, A.G., Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 5, p. 581.

    Article  Google Scholar 

  12. Samco, S., Kilbas, A., and Marichev, O., Fractional Integrals and Derivatives: Theory and Applications, New York: Gordon and Breach, 1993.

    Google Scholar 

  13. Volkov, N.V., Lagutin, A.A., and Tyumentsev, A.G., J. Phys.: Conf. Ser., 2015, vol. 632, p. 012027.

    Google Scholar 

  14. Lagutin, A.A., Makarov, V.V., and Tyumentsev, A.G., Proc. 27th Int. Cosmic Ray Conference, Hamburg, 2001, vol. 5, p. 1889.

  15. Berezhko, E.G., Ksenofontov, L.T., Ptuskin, V.S., et al., Astron. Astrophys., 2003, vol. 410, p. 189.

    Article  ADS  Google Scholar 

  16. Blasi, P. and Serpico, P., Phys. Rev. Lett., 2009, vol. 103, p. 081103.

    Article  ADS  Google Scholar 

  17. Tomassetti, N. and Donato, F., Astron. Astrophys., 2012, vol. 544, p. 16.

    Article  ADS  Google Scholar 

  18. Berezhko, E. and Ksenofontov, L., Astrophys. J. Lett., 2014, vol. 791, p. L22.

    Article  ADS  Google Scholar 

  19. Cholis, I., Hooper, D., and Linden, T., Phys. Rev. D: Part. Fields, 2017, vol. 95, p. 123007.

    Article  ADS  Google Scholar 

  20. Uchaikin, V. and Zolotarev, V., Chance and Stability, Utrecht: VSP, 1999.

    Book  MATH  Google Scholar 

  21. Fang, K., Bi, X.-J., Lin, S.-J., and Yuan, Q., Chin. Phys. Lett., 2021, vol. 38, no. 3, p. 039801.

    Article  ADS  Google Scholar 

  22. Batista, R.A., Tjus, J.B., and Dörner, J., Proc. Int. Cosmic Ray Conference 2021, Berlin, 2021, p. 978.

  23. Lagutin, A.A. and Volkov, N.V., Phys. At. Nucl., 2021, vol. 84, no. 6, p. 975.

    Article  Google Scholar 

  24. Perri, S. and Zimbardo, G., Astrophys. J., 2007, vol. 671, p. 177.

    Article  ADS  Google Scholar 

  25. Perri, S. and Zimbardo, G., Astrophys. Space Sci. Trans., 2008, vol. 4, p. 27.

    Article  ADS  Google Scholar 

  26. Perri, S. and Zimbardo, G., J. Geophys. Res., 2008, vol. 113, p. A03107.

    ADS  Google Scholar 

  27. Sugiyama, T. and Shiota, D., Astrophys. J. Lett., 2011, vol. 731, p. 34.

    Article  ADS  Google Scholar 

  28. Perri, S. and Zimbardo, G., Adv. Space Res., 2011, vol. 44, p. 465.

    Article  ADS  Google Scholar 

  29. Zimbardo, G., Perri, S., Pommois, P., and Veltri, P., Adv. Space Res., 2012, vol. 49, p. 1633.

    Google Scholar 

  30. Perri, S., Amato, E., and Zimbardo, G., Astron. Astrophys., 2016, vol. 596, p. A34.

    Article  ADS  Google Scholar 

  31. Wang, S.-H., Fang, K., Bi, X.-J., and Yin, P.-F., Phys. Rev. D: Part. Fields, 2021, vol. 103, p. 063035.

    Article  ADS  Google Scholar 

  32. Lagutin, A.A. and Tyumentsev, A.G., Izv. Altai. Gos. Univ., 2004, no. 35, no. 4, p. 4.

  33. Aguilar, M. et al. (AMS-02 Collab.), Phys. Rev. Lett., 2019, vol. 122, p. 101101.

    Article  ADS  Google Scholar 

  34. Adriani, O. et al. (CALET Collab.), Phys. Rev. Lett., 2018, vol. 120, p. 261102.

    Article  ADS  Google Scholar 

  35. Abdollahi, S. et al. (Fermi-LAT Collab.), Phys. Rev. D: Part. Fields, 2017, vol. 95, p. 082007.

    Article  ADS  Google Scholar 

  36. Chang, J. et al. (Fermi-LAT Collab.), Nature, 2008, vol. 456, p. 362.

    Article  ADS  Google Scholar 

  37. Yoshida, K., Torii, S., Yamagami, T., et al., Adv. Space Res., 2008, vol. 42, p. 1670.

    Article  ADS  Google Scholar 

  38. DuVernois, M.A., Barwick, S.W., and Beatty, J.J., Astrophys. J., 2001, vol. 559, p. 296.

    Article  ADS  Google Scholar 

  39. Alcaraz, J., Alpat, B., and Ambrosi, G., Phys. Lett. B, 2000, vol. 484, p. 10.

    Article  ADS  Google Scholar 

  40. Adriani, O. et al. (PAMELA Exp.), Phys. Rev. Lett., 2011, vol. 106, p. 201101.

    Article  ADS  Google Scholar 

  41. Adriani, O. et al. (PAMELA Exp.), Phys. Rev. Lett., 2013, vol. 111, p. 081102.

    Article  ADS  Google Scholar 

  42. Boezio, M., Carlson, P., and Francke, T., Astrophys. J., 2000, vol. 532, p. 653.

    Article  ADS  Google Scholar 

  43. Schoo, S., Apel, W.D., Arteaga-Velázquez, J.C., et al., Proc. Int. Cosmic Ray Conference 2015, Hague, 2015, p. 263.

  44. Abbasi, R.U., Abe, M., Abu-Zayyad, T., et al., Astrophys. J., 2018, vol. 865, p. 74.

    Article  ADS  Google Scholar 

  45. Aartsen, M.G., Ackermann, M., Adams, J., et al., Phys. Rev. D: Part. Fields, 2019, vol. 100, p. 082002.

    Article  ADS  Google Scholar 

  46. Abreu, P. et al. (Pierre Auger Collab.), Eur. Phys. J., 2021, vol. 81, p. 966.

    Article  ADS  Google Scholar 

  47. Budnev, N.M., Chiavassa, A., Gress, O.A., et al., Astropart. Phys., 2020, vol. 117, p. 102406.

    Article  Google Scholar 

  48. Prosin, V. et al. (TAIGA Collab.), arXiv:2208.01689, 2022.

  49. Yushkov, A.V., (on behalf of the Pierre Auger Collab.), Proc. Int. Cosmic Ray Conference 2019, Madison, 2019, p. 482.

Download references

Funding

The work is supported by the the Russian Science Foundation (grant no. 23-72-00057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lagutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagutin, A.A., Volkov, N.V. & Raikin, R.I. Interpretation of Fluxes of Cosmic-Ray Nuclei and Electrons within a Nonclassical Diffusion Model. Bull. Russ. Acad. Sci. Phys. 87, 878–883 (2023). https://doi.org/10.3103/S1062873823702635

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823702635

Navigation