Skip to main content
Log in

The System of Anticoincidence Detectors of Space-Based Gamma-Ray Telescope GAMMA-400: The Characteristics Obtained Using Positron Beam of Synchrotron S-25R “PAKHRA” of the Lebedev Physical Institute, Russian Academy of Sciences

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The space-based gamma-ray telescope must effectively separate photons from charged particles of instrumental background and cosmic rays. It requires that the anticoincidence system of the telescope must have high detection efficiency, large dynamic range and good enough energy and time resolution for charged particles. The main results obtained using 246 MeV secondary positron beam of synchrotron S-25R “PAKHRA” of Lebedev Physical Institute with prototype of system of anticoincidence detectors of space-based gamma-ray telescope GAMMA-400 are presented. The amplitude resolution, time resolution and charged particles detection efficiency are adduced. All measurements were performed using “fast” output of silicon photomultipliers of prototype scintillation detectors sensors. Fractal dimensions of temporal profiles registered during measurements using positron beam and atmospheric muons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Galper, A.M., O. Adriani, R. L. Aptekar, et al., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 11, p. 1339.

    Article  Google Scholar 

  2. Topchiev, N.P., Galper, A.M., V. Bonvicini, et al., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 3, p. 417.

    Article  Google Scholar 

  3. Topchiev, N.P., Galper, A.M., Arkhangelskaja, I.V., et al., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 83, no. 5, p. 629.

    Article  Google Scholar 

  4. Arkhangelskiy, A.I., Galper, A.M., Arkhangelskaja, I.V., et al., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 5, p. 625.

    Article  Google Scholar 

  5. Arkhangelskiy, A.I., Galper, A.M., Arkhangelskaja, I.V., et al., Izv. Nauk, Ross. Akad., Ser. Fiz., 2021, vol. 85, no. 8, p. 1160.

    Google Scholar 

  6. Galper, A.M., Topchiev, N.P., and Yu. T. Yurkin., Astron. Rep., 2018, vol. 62, p. 882.

    Article  ADS  Google Scholar 

  7. Syrov, A.S., Smirnov, V.V., Sokolov, V.N., et al., Cosmonaut. Rocket Eng., 2015, vol. 3, p. 58.

    Google Scholar 

  8. Kheymits, M.D., Galper, A.M., Arkhangelskaja, I.V., Arkhangelskiy, A.I., Gusakov, Yu.V., Zverev, V.G., Kadilin, V.V., Kaplin, V.A., Leonov, A.A., Naumov, P.Yu., Runtso, M.F., Suchkov, S.I., Topchiev, N.P., and Yurkin, Yu.T., Instrum. Exp. Tech., 2016, vol. 59, no. 4, p. 508.

    Article  Google Scholar 

  9. Arkhangelskiy, A.I., Galper, A.M., Arkhangelskaja, I.V., et al., Phys. At. Nucl., 2020, vol. 83, no. 2, p. 252.

    Article  Google Scholar 

  10. Leonov, A.A., Galper, A.M., Topchiev, N.P., et al., Phys. At. Nucl., 2019, vol. 82, no. 6, p. 855.

    Article  Google Scholar 

  11. Signal driven multiplexing of silicon photomultiplier arrays, Semiconductor Components Industries, publ. no. AND9772/D, 2015. http://www.onsemi.com/ pub/Collateral/AND9772-D.PDF. Accessed November 18, 2022.

  12. Alekseev, V., Baskov, V., Dronov, V., et al., J. Phys.: Conf. Ser., 2019, vol. 1390, p. 012127.

    Google Scholar 

  13. Arkhangelskiy, A.I., Galper, A.M., Arkhangelskaja, I.V., et al., J. Phys.: Conf. Ser., 2019, vol. 1390, p. 012130.

    Google Scholar 

  14. Gehrels, N., Nucl. Instrum. Methods Phys. Res., Sect. A, 1992, vol. 313, p. 513.

    Google Scholar 

  15. Dean, A.J., Lei, F., and Knight, P.J., Space Sci. Rev., 1991, vol. 57, p. 109.

    Article  ADS  Google Scholar 

  16. Rubin, B.C., Lei, F., Fishman, G.J., et al., Astron. Astrophys., Suppl. Ser., 1996, vol. 120, p. 687.

    Google Scholar 

  17. Arkhangelskaja, I.V., Arkhangelskiy, A.I., and Mikhailova, A.V., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 5, p. 620.

    Article  Google Scholar 

  18. Arkhangelskaja, I.V., Arkhangelsky, A.I., and Kotov, Yu.D., et al., Sol. Syst. Res., 2006, vol. 40, no. 4, p. 302.

    Article  ADS  Google Scholar 

  19. Arkhangelskaja, I.V., Arkhangelskiy, A.I., Chasovikov, E.N., et al., J. Phys.: Conf. Ser., 2019, vol. 1181, p. 012083.

    Google Scholar 

  20. Trubetskov, D. and Trubetskova, E., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2016, vol. 24, no. 6, p. 4.

    Google Scholar 

  21. Balabin, Yu.V., Germanenko, A.V., Mikhalko, E.A., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 3, p. 290.

    Article  Google Scholar 

Download references

Funding

The presented study is partly performed within the National Research Nuclear University MEPhI program Priority 2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Arkhangelskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhangelskiy, A.I., Galper, A.M., Arkhangelskaja, I.V. et al. The System of Anticoincidence Detectors of Space-Based Gamma-Ray Telescope GAMMA-400: The Characteristics Obtained Using Positron Beam of Synchrotron S-25R “PAKHRA” of the Lebedev Physical Institute, Russian Academy of Sciences. Bull. Russ. Acad. Sci. Phys. 87, 1014–1022 (2023). https://doi.org/10.3103/S1062873823702301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823702301

Keywords:

Navigation