Skip to main content
Log in

Laser Beam Wavefront Model Analysis

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The paper evaluates the nature of the change in the wavefront surface curvature in the initial position, which is formed at the exit pupil of the optical system located directly behind the last refractive surface. To solve the problem, an experimental setup has been developed, consisting of a semiconductor laser and an aberration optical system with a mechanism for moving screens. The arrangement of the optical system with a radiation source at a given limiting parameter causes an increase in the action of wave aberration, which ensures the redistribution of the intensity in the transverse section of the converted laser beam. The center of the diaphragm and the mark on the screen are located on the same axis, which coincides with the axis of the converted laser beam. A functional dependence was obtained between the inclination angle of the normal to the converted laser beam axis of the interference structure on the radial location of the normal intersection point with the wavefront surface relative to the axis laser beam. Based on the use of modern optical systems technologies, the problems of changing the spatial-geometric parameters of the laser beam and obtaining a measuring system using the proposed parameter of the interference structure in the cross section of the laser beam are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Klimkov, Yu.M., Applied Laser Optics, Moscow: Mashi-nostroenie, 2009.

    Google Scholar 

  2. Zaikov, V.I. and Bashkov, O.V., Zavod. Lab., Diagn. Mater., 2011, no. 6 (77), p. 37.

  3. Kudryashov, A.V., Samarkin, V.V., Kudryashov, A.V., Sheldakova, Yu.V., and Aleksandrov, A.G., Optoelectron., Instrum. Data Process., 2012, vol. 48, no. 2, p. 153.

    Article  Google Scholar 

  4. Lukin, V.P., Phys.—Usp., 2014, vol 57, p. 556.

    Article  ADS  Google Scholar 

  5. Odulov, S.G., Soskin, M.S., and Khizhnyak, A.I., Lazery na dinamicheskikh reshetkah. Opticheskie generatory na chetyrekhvolnovom smeshchenii (Lasers on the Dynamic Grids: Optical Generators on a Four-Wave Mixing), Moscow: Nauka, 1990.

  6. Andreeva, M.S., Iroshnikov, N.G., Koryabin, A.V., Larichev, A.V., and Shmalgauzen, V.I., Optoelectron., Instrum. Data Process., 2012, vol. 48, no. 2, p. 197.

    Article  Google Scholar 

  7. Akondi, V., Castillo, S., and Vohnsen, B., Opt. Express, 2013, vol. 21, no. 15, p. 18261.

    Article  ADS  Google Scholar 

  8. Venediktov, V.Yu., Photonics Russ., 2016, no. 1, p. 132.

  9. Korotaev, D.N., Ivanova, E.V., Kim, V.A., J. Phys.: Conf. Ser., 2017, vol. 858, p. 012016. https://doi.org/10.1088/1742-6596/858/1/012016

    Article  Google Scholar 

  10. Andersen, G., Andersen, F., Venediktov, G., Ghebremichael, R., and Gaddipati, P., Proc. SPIE, 2012, vol. 8447, p. 8447L-1.

    Google Scholar 

  11. Dong, S., Haist, T., Osten, W., Ruppe, T., and Sawodny, O., Appl. Opt., 2012, vol. 51, no. 9, p. 1318.

    Article  ADS  Google Scholar 

  12. Kovalev, M.S., Krasin, G.K., Malinina, P.I., Odinokov, S.B., and Sagatelyan, H.R., J. Phys.: Conf. Ser., 2016, vol. 737, p. 012064.

    Google Scholar 

  13. Syromyatnikova, A.S., Safonova, M.N., Kim, V.A., Tarasov, P.P., and Fedotov, A.A., AIP Conf. Proc., 2015, vol. 1683, p. 020226. https://doi.org/10.1063/1.4932916

    Article  Google Scholar 

  14. Voronich, I.H., Garanin, S.G., Zaretsky, A.I., et al., Quantum Electron., 2005, vol. 35, no. 2, p. 140.

    Article  ADS  Google Scholar 

  15. Bashkov, O.V., Romashko, R.V., Zaikov, V.I., Panin, S.V., Bezruk, M.N., Khun, K., and Bashkov, I.O., Russ. J. Nondestr. Test., 2017, vol. 53, no. 6, p. 415. https://doi.org/10.1134/S1061830917060031

  16. Venediktov, V.Yu., Osnovy adaptivnoi optiki: uchebnoe posobie (Fundamentals of Adaptive Optics: A Manual), St. Petersburg: LETI Univ., 2014.

Download references

Funding

The work was supported by a grant from the President of the Russian Federation for state support of leading scientific schools of the Russian Federation (project no. NSh-452.2022.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zaikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaikov, V.I., Bashkov, O.V. & Bashkov, I.O. Laser Beam Wavefront Model Analysis. Bull. Russ. Acad. Sci. Phys. 87, 537–540 (2023). https://doi.org/10.3103/S1062873823701885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823701885

Keywords:

Navigation