Skip to main content
Log in

Features of Cl K-edge XANES Spectra of Transition Metal Complexes {MCl6}n (M = Rh, Pd, Re, Os, Ir, Pt)

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Cl K-edges of a wide range of chlorides of 4d and 5d transition metals {MCl6}n (M = Rh, Pd, Re, Os, Ir, Pt) are obtained using the Kosmos station of the VEPP-4 synchrotron. The combined use of experimental X-ray and theoretical means allows determination of the magnitude of spin–orbit coupling (SOC), depending on the transition metal. The features of the Cl K-edge are analyzed with and without SOC, and upon stretching and compression of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Streltsov, S.V. and Khomskii, D.I., Phys.—Usp., 2017, vol. 60, no. 11, p. 1121.

    Article  ADS  Google Scholar 

  2. Streltsov, S.V. and Khomskii, D.I., Phys. Rev. X, 2020, vol. 10, no. 3, p. 031043.

    Google Scholar 

  3. Takayama, T., Chaloupka, J., Smerald, A., et al., J. Phys. Soc. Jpn., 2021, vol. 90, no. 6, p. 062001.

    Article  ADS  Google Scholar 

  4. Kim, B.J., Ohsumi, H., Komesu, T., et al., Science, 2009, vol. 323, no. 5919, p. 1329.

    Article  ADS  Google Scholar 

  5. Chen, G., Pereira, R., and Balents, L., Phys. Rev. B, 2010, vol. 82, no. 17, p. 174440.

    Article  ADS  Google Scholar 

  6. Sinova, J., Valenzuela, S.O., Wunderlich, J., et al., Rev. Mod. Phys., 2015, vol. 87, no. 4, p. 1213.

    Article  ADS  Google Scholar 

  7. Hirsch, J.E., Phys. Rev. Lett., 1999, vol. 83, no. 9, p. 1834.

    Article  ADS  Google Scholar 

  8. Manchon, A., Koo, H.C., Nitta, J., et al., Nat. Mater., 2015, vol. 14, no. 9, p. 871.

    Article  ADS  Google Scholar 

  9. Fert, A., Reyren, N., and Cros, V., Nat. Rev. Mater., 2017, vol. 2, no. 7, p. 17031.

    Article  ADS  Google Scholar 

  10. Chaloupka, J., Jackeli, G., and Khaliullin, G., Phys. Rev. Lett., 2010, vol. 105, no. 2, p. 027204.

    Article  ADS  Google Scholar 

  11. Kim, Y.K., Krupin, O., Denlinger, J.D., et al., Science, 2014, vol. 345, no. 6193, p. 187.

    Article  ADS  Google Scholar 

  12. Hao, L., Meyers, D., Dean, M.P.M., et al., J. Phys. Chem. Solids, 2019, vol. 128, p. 39.

    Article  ADS  Google Scholar 

  13. Khan, N., Prishchenko, D., Skourski, Y., et al., Phys. Rev. B, 2019, vol. 99, no. 14, p. 144425.

    Article  ADS  Google Scholar 

  14. Sheng, X.-L., Nikoli, B.K, Phys. Rev. B, 2017, vol. 95, no. 20, p. 201402.

    Article  ADS  Google Scholar 

  15. Yamada, M.G., Oshikawa, M., and Jackeli, G., Phys. Rev. Lett., 2018, vol. 121, no. 9, p. 097201.

    Article  ADS  Google Scholar 

  16. Plumb, K.W., Clancy, J.P., Sandilands, L.J., et al., Phys. Rev. B, 2014, vol. 90, no. 4, p. 041112.

    Article  ADS  Google Scholar 

  17. Ishikawa, H., Takayama, T., Kremer, R.K., et al., Phys. Rev. B, 2019, vol. 100, no. 4, p. 045142.

    Article  ADS  Google Scholar 

  18. Pedersen, K.S., Woodruff, D.N., Singh, S.K., et al., Chem.—Eur. J., 2017, vol. 23, no. 47, p. 11244.

    Article  Google Scholar 

  19. Stamokostas, G.L. and Fiete, G.A., Phys. Rev. B, 2018, vol. 97, no. 8, p. 085150.

    Article  ADS  Google Scholar 

  20. Liu, X., Katukuri, V.M., Hozoi, L., et al., Phys. Rev. Lett., 2012, vol. 109, no. 15, p. 157401.

    Article  ADS  Google Scholar 

  21. de Groot, F.M.F., Grioni, M., Fuggle, J.C., et al., Phys. Rev. B, 1989, vol. 40, no. 8, p. 5715.

    Article  ADS  Google Scholar 

  22. Lafuerza, S., Subias, G., Garcia, J., et al., J. Phys.: Condens. Matter, 2011, vol. 23, no. 32, p. 325601.

    Google Scholar 

  23. Chernyaev, I.I., Sintez kompleksnykh soedinenii metallov platinovoi gruppy. Spravochnik (Synthesis of Complex Compounds of Platinum Group Metals: Handbook), Moscow: Nauka, 1964.

  24. Gubanov, A.I., Korenev, S.V., Gromilov, S.A., et al., J. Struct. Chem., 2000, vol. 41, no. 2, p. 340.

    Article  Google Scholar 

  25. Korol’kov, I.V., Gubanov, A.I., Yusenko, K.V., et al., J. Struct. Chem., 2007, vol. 48, no. 3, p. 486.

    Article  Google Scholar 

  26. Gromilov, S.A., Korenev, S.V., Khranenko, S.P., et al., J. Struct. Chem., 1997, vol. 38, no. 1, p. 96.

    Article  Google Scholar 

  27. Zabrodsky, V.V., Aruev, P.N., Sukhanov, V.L., et al., Proc. ISMTII-2009, St. Petersburg, 2009, vol. 3, p. 243.

  28. Piminov, P.A., Baranov, G.N., Bogomyagkov, A.V., et al., Phys. Procedia, 2016, vol. 84, p. 19.

    Article  ADS  Google Scholar 

  29. Nikolenko, A.D., Avakyan, S.V., Afanas’ev, I.M., et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2012, vol. 6, no. 5, p. 388.

    Article  Google Scholar 

  30. Asanova, T.I., Asanov, I.P., Kim, M.-G., et al., New J. Chem., 2018, vol. 42, no. 7, p. 5071.

    Article  Google Scholar 

  31. Schaefers, F., Mertin, M., and Gorgoi, M., Rev. Sci. Instrum., 2007, vol. 78, no. 12, p. 123102.

    Article  ADS  Google Scholar 

  32. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., et al., J. Comput. Chem., 2001, vol. 22, no. 9, p. 931.

    Article  Google Scholar 

  33. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.

    Article  ADS  Google Scholar 

  34. Becke, A.D., Phys. Rev. A, 1988, vol. 38, no. 6, p. 3098.

    Article  ADS  Google Scholar 

  35. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.

    Article  ADS  Google Scholar 

  36. Van Lenthe, E. and Baerends, E.J., J. Comput. Chem., 2003, vol. 24, no. 9, p. 1142.

    Article  Google Scholar 

  37. Visscher, L. and van Lenthe, E., Chem. Phys. Lett., 1999, vol. 306, nos. 5–6, p. 357.

    Article  ADS  Google Scholar 

  38. van Lenthe, E., Ehlers, A., and Baerends, E.-J., J. Chem. Phys., 1999, vol. 110, no. 18, p. 8943.

    Article  ADS  Google Scholar 

  39. Hoek, P.J., Baerends, E.J., and van Santen, R.A., J. Phys. Chem., 1989, vol. 93, no. 17, p. 6469.

    Article  Google Scholar 

  40. Neese, F., WIREs Comput. Mol. Sci., 2022, vol. 12, no. 5, p. e1606.

    Article  Google Scholar 

  41. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, no. 18, p. 3297.

    Article  Google Scholar 

  42. Stoychev, G.L., Auer, A.A., and Neese, F., J. Chem. Theory Comput., 2017, vol. 13, no. 2, p. 554.

    Article  Google Scholar 

  43. Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Acc., 2013, vol. 132, no. 5, p. 1363.

    Article  Google Scholar 

  44. Hess, B.A., Phys. Rev. A, 1986, vol. 33, no. 6, p. 3742.

    Article  ADS  Google Scholar 

  45. Ganyushin, D. and Neese, F., J. Chem. Phys., 2013, vol. 138, no. 10, p. 104113.

    Article  ADS  Google Scholar 

  46. Angeli, C., Cimiraglia, R., and Malrieu, J.-P., J. Chem. Phys., 2002, vol. 117, no. 20, p. 9138.

    Article  ADS  Google Scholar 

  47. Lang, L., Atanasov, M., and Neese, F., J. Phys. Chem. A, 2020, vol. 124, no. 5, p. 1025.

    Article  Google Scholar 

  48. Neese, F., J. Comput. Chem., 2003, vol. 24, no. 14, p. 1740.

    Article  Google Scholar 

  49. Neese, F. and Solomon, E.I., Inorg. Chem., 1998, vol. 37, no. 26, p. 6568.

    Article  Google Scholar 

  50. Roemelt, M. and Neese, F., J. Phys. Chem. A, 2013, vol. 117, no. 14, p. 3069.

    Article  Google Scholar 

  51. Khomskii, D.I. and Streltsov, S.V., Chem. Rev., 2021, vol. 121, no. 5, p. 2992.

    Article  Google Scholar 

  52. Pershina, V., Russ. Chem. Rev., 2009, vol. 78, no. 12, p. 1153.

    Article  ADS  Google Scholar 

  53. Georges, A., de’ Medici, L., and Mravlje, J., Annu. Rev. Condens. Matter Phys., 2013, vol. 4, no. 1, p. 137.

    Article  ADS  Google Scholar 

  54. Yuan, B., Clancy, J.P., Cook, A.M., et al., Phys. Rev. B, 2017, vol. 95, no. 23, p. 235114.

    Article  ADS  Google Scholar 

  55. Shadle, S.E., Hedman, B., Hodgson, K.O., et al., J. Am. Chem. Soc., 1995, vol. 117, no. 8, p. 2259.

    Article  Google Scholar 

  56. Sergentu, D.-C. and Autschbach, J., Chem. Sci., 2022, vol. 13, no. 11, p. 3194.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Siberian Center of Synchrotron and Terahertz Radiation based on the VEPP-4–VEPP-2000 Complex at the Budker Institute of Nuclear Physics. Our quantum chemical calculations were made using the resources of the Siberian Supercomputer Center at the Institute of Computational Mathematics and Mathematical Geophysics. The authors are grateful to the RF Ministry of Science and Higher Education.

Funding

This work was supported by the Russian Science Foundationas, project no. 22-22-00683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Fedorenko.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.D., Asanov, I.P., Asanova, T.I. et al. Features of Cl K-edge XANES Spectra of Transition Metal Complexes {MCl6}n (M = Rh, Pd, Re, Os, Ir, Pt). Bull. Russ. Acad. Sci. Phys. 87, 654–661 (2023). https://doi.org/10.3103/S1062873822701805

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822701805

Navigation