Skip to main content
Log in

Mechanical Response of Amorphous Ni62Nb38 Metallic Alloy under Uniaxial Strain

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Large-scale molecular dynamics simulation is used to study the mechanical properties of amorphous Ni62Nb38 at the temperature 300 K determined at uniaxial compression and tensile deformation. The stress–strain curves, Young’s modulus, yield strength, and fracture strength are obtained for this system. A relationship between the Young’s modulus and the yield strength is observed for the first time and obeys the same empirical linear law for metallic glasses of other compositions. It is shown that the mechanical properties of amorphous Ni62Nb38 alloy are higher than those of metallic glasses of other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Schroers, J., Adv. Mater., 2010, vol. 22, p. 1566.

    Article  Google Scholar 

  2. Kruzic, J.J., Adv. Eng. Mater., 2016, vol. 18, p. 1308.

    Article  Google Scholar 

  3. Xiong, J., Shi, S.-Q., and Zhang, T.-Y., Mater. Des., 2020, vol. 187, p. 108378.

    Article  Google Scholar 

  4. Ward, L., O’Keeffe, S.C., Stevick, J., et al., Acta Mater., 2018, vol. 159, p. 102.

    Article  ADS  Google Scholar 

  5. Schuler, J.D. and Rupert, T.J., Acta Mater., 2017, vol. 140, p. 196.

    Article  ADS  Google Scholar 

  6. Galimzyanov, B.N. and Mokshin, A.V., J. Non-Cryst. Solids, 2021, vol. 570, p. 121009.

    Article  Google Scholar 

  7. Jones, M.R., DelRio, F.W., Pegues, J.W., et al., J. Mater. Res., 2021, vol. 36, p. 3167.

    Article  ADS  Google Scholar 

  8. Xia, L., Li, W.H., Fang, S.S., et al., J. Appl. Phys., 2006, vol. 99, p. 026103.

    Article  ADS  Google Scholar 

  9. Lu, W., Tseng, J.-C., Feng, A., et al., J. Non-Cryst. Solids, 2021, vol. 564, p. 120834.

    Article  Google Scholar 

  10. Qu, R.T., Liu, Z.Q., Wang, R.F., et al., J. Alloys Compd., 2015, vol. 637, p. 44.

    Article  Google Scholar 

  11. Zhang, Y., Ashcraft, R., Mendelev, M.I., et al., J. Chem. Phys., 2016, vol. 145, p. 204505.

    Article  ADS  Google Scholar 

  12. Lesz, S. and Dercz, G., J. Therm. Anal. Calorim., 2016, vol. 126, p. 19.

    Article  Google Scholar 

  13. Galimzyanov, B.N., Doronina, M.A., and Mokshin, A.V., J. Non-Cryst. Solids, 2021, vol. 572, p. 121102.

    Article  Google Scholar 

  14. Tuckerman, M.E. and Alejandre, J., López-Rendón, R., et al., J. Phys. A, 2006, vol. 39, p. 5629.

    Article  ADS  MathSciNet  Google Scholar 

  15. Shinoda, W., Shiga, M., and Mikami, M., Phys. Rev. B, 2004, vol. 69, p. 134103.

    Article  ADS  Google Scholar 

  16. Bringa, E.M., Caro, A., Wang, Y., et al., Science, 2005, vol. 309, p. 1838.

    Article  ADS  Google Scholar 

  17. Shen, L.-M., Acta Mech. Sin., 2012, vol. 28, p. 1125.

    Article  ADS  Google Scholar 

  18. Evans, D.J. and Morriss, G.P., Statistical Mechanics of Non-Equilibrium Liquids, Cambridge: Cambridge Univ. Press, 2008.

    Book  MATH  Google Scholar 

  19. Galimzyanov, B.N. and Mokshin, A.V., Int. J. Solids Struct., 2021, vol. 224, p. 111047.

    Article  Google Scholar 

  20. Xia, L., Shan, S.T., Ding, D., et al., Intermetallics, 2007, vol. 15, p. 1046.

    Article  Google Scholar 

  21. Teker, E., Danish, M., Gupta, M.K., et al., Trans. Indian Inst. Met., 2022, vol. 75, p. 717.

    Article  Google Scholar 

  22. Fan, H., Wang, Q., El-Awady, J.A., et al., Nat. Commun., 2021, vol. 12, p. 1845.

    Article  ADS  Google Scholar 

  23. Courtney, T.H., Mechanical Behavior of Materials, New York: McGraw Hill, 2005.

    Google Scholar 

  24. Bobylev, A.V., Mekhanicheskie i tekhnologicheskie svoistva metallov. Spravochnik (Mechanical and Technological Properties of Metals: Handbook), Moscow: Metallurgiya, 1980.

  25. Wang, W.H., J. Appl. Phys., 2006, vol. 99, p. 093506.

    Article  ADS  Google Scholar 

  26. Wang, Y., Wang, Q., Zhao, J., et al., Scr. Mater., 2010, vol. 63, p. 178.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00022. A.V.M. is grateful to the Foundation for the Development of Theoretical Physics and Mathematics (BASIS) contract no. 20-1-2-38-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Galimzyanov.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by N. Podymova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimzyanov, B.N., Doronina, M.A. & Mokshin, A.V. Mechanical Response of Amorphous Ni62Nb38 Metallic Alloy under Uniaxial Strain. Bull. Russ. Acad. Sci. Phys. 87, 498–503 (2023). https://doi.org/10.3103/S1062873822701532

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822701532

Navigation