Skip to main content
Log in

Imaging Photoplethysmography as a Reliable Tool for Monitoring Tissue Perfusion during Open Brain and Abdominal Surgeries

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Assessment of microcirculation and tissue perfusion parameters is extremely important during surgical interventions, especially during operations on the brain and abdominal organs. Such a system must be handy, non-invasive, and directly integrated into the surgical workflow. To date, there is no standard procedure for assessing blood circulation in routine clinical practice. All the technical proposals are in the stage of research and development. This paper is discussing features of imaging photoplethysmography (IPPG) application to intraoperative visualization and quantitative assessment of tissue perfusion. Measurement of perfusion using photoplethysmography has been known since the 30s of the last century. Nevertheless, discussions of the physiological model underlying this method are still ongoing. An alternative model of light modulation in interaction with blood vessels in vivo was proposed in our group in 2015. Based on this model, we developed a system of intraoperative visualization of blood flow, which uses only video recording of a tissue under study followed by appropriate data processing. Distinguishing feature of the system is synchronous recording of video frames and electrocardiogram. The developed system allows for contactless monitoring of blood flow in cortex and abdominal organs in real time with high spatial resolution. This report is an overview of recent pilot studies on monitoring blood flow parameters during open brain and abdominal surgeries using the IPPG system. It was demonstrated that the quantitative assessment of blood perfusion by IPPG is in good agreement with that obtained by ICG-fluorescence angiography. IPPG can become an objective quantitative monitoring system for tissue perfusion in the operating room due to its simplicity, low cost and no need for any agent injections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Jansen, S.M., de Bruin, D.M., van Berge Henegouwen, M.I., Strackee, S.D., Veelo, D.P., van Leeuwen, T.G., and Gisbertz, S.S., Dis. Esophagus 2018, vol. 31, dox161. https://doi.org/10.1093/dote/dox161

    Article  Google Scholar 

  2. Slooter, M.D., Jansen, S.M.A., Bloemen, P.R., van den Elzen, R.M., Wilk, L.S., van Leeuwen, T.G., van Berge Henegouwen, M.I., de Bruin, D.M., and Gisbertz, S.S., Appl. Sci., 2020, vol. 10, p. 5522. https://doi.org/10.3390/app10165522

    Article  Google Scholar 

  3. Lütken, C.D., Achiam, M.P., Osterkamp, J., Svendsen, M.B., and Nerup, N., Langenbeck’s Arch. Surg., 2021, vol. 406, p. 251. https://doi.org/10.1007/s00423-020-01966-0

    Article  Google Scholar 

  4. Kashchenko, V.A., Zaytsev, V.V., Ratnikov, V.A., and Kamshilin, A.A., Biomed. Opt. Express, 2022, vol. 13, p. 3954.https://doi.org/10.1364/BOE.462694

  5. Hertzman, A.B., Am. J. Physiol., 1938, vol. 124, p. 328. https://doi.org/10.1152/ajplegacy.1938.124.2.328

    Article  Google Scholar 

  6. J. W. Severinghaus and Honda, Y., J. Clin. Monit. Comput., 1987, vol. 3, p. 135. https://doi.org/10.1007/BF00858362

    Article  Google Scholar 

  7. Wu, T., Blazek, V., and Schmitt, H.J., Proc. SPIE, 2000, vol. 4163, p. 62.

    Article  ADS  Google Scholar 

  8. Kamshilin, A.A., Miridonov, S., Teplov, V., Saarenheimo, R., and Nippolainen, E., Biomed. Opt. Express, 2011, vol. 2, p. 996. https://doi.org/10.1364/BOE.2.000996

    Article  Google Scholar 

  9. Trumpp, A., Schell, J., Malberg, H., and Zaunseder, S., Curr. Dir. Biomed. Eng., 2016, vol. 2, p. 199. https://doi.org/10.1515/cdbme-2016-0045

    Article  Google Scholar 

  10. Kamshilin, A.A., Krasnikova, T.V., Volynsky, M.A., Miridonov, S.V., and Mamontov, O.V., Sci. Rep., 2018, vol. 8, p. 13663. https://doi.org/10.1038/s41598-018-32036-7

    Article  ADS  Google Scholar 

  11. Fleischhauer, V., Ruprecht, N., and Zaunseder, S., Curr. Dir. Biomed. Eng., 2019, vol. 5, p. 105. https://doi.org/10.1515/cdbme-2019-0027

    Article  Google Scholar 

  12. Reisner, A., Shaltis, P.A., McCombie, D., and Asada, H.H., Anesthesiology, 2008, vol. 108, p. 950. https://doi.org/10.1097/ALN.0b013e31816c89e1

    Article  Google Scholar 

  13. Cui, W., Ostrander, L.E., and Lee, B.Y., IEEE Trans. Biomed. Eng., 1990, vol. 37, p. 632. https://doi.org/10.1109/10.55667

    Article  Google Scholar 

  14. Maeda, Y., Sekine, M., and Tamura, T., J. Med. Syst., 2011, vol. 35, p. 829. https://doi.org/10.1007/s10916-010-9506-z

    Article  Google Scholar 

  15. Fung, Y.C., Zweifach, B.W., and Intaglietta, M., Circ. Res., 1966, vol. 19, p. 441. https://doi.org/10.1161/01.RES.19.2.441

    Article  Google Scholar 

  16. Kamshilin, A.A., Nippolainen, E., Sidorov, I.S., Vasilev, P.V., Erofeev, N.P., Podolian, N.P., and Romashko, R.V., Sci. Rep., 2015, vol. 5, p. 10494. https://doi.org/10.1038/srep10494

    Article  ADS  Google Scholar 

  17. Lyubashina, O.A., Mamontov, O.V., Volynsky, M.A., Zaytsev, V.V., and Kamshilin, A.A., Front. Neurosci., 2019, vol. 13, p. 1235. https://doi.org/10.3389/fnins.2019.01235

    Article  Google Scholar 

  18. Sidorov, I.S., Volynsky, M.A., and Kamshilin, A.A., Biomed. Opt. Express, 2016, vol. 7, p. 2469. https://doi.org/10.1364/BOE.7.002469

    Article  Google Scholar 

  19. Zaunseder, S., Vehkaoja, A., Fleischhauer, V., and Hoog Antink, C., Biomed. Signal Process. Control, 2022, vol. 74, 103538. https://doi.org/10.1016/j.bspc.2022.103538

    Article  Google Scholar 

  20. Mamontov, O.V., Shcherbinin, A.V., Romashko, R.V., and Kamshilin, A.A., Appl. Sci., 2020, vol. 10, p. 6192. https://doi.org/10.3390/app10186192

    Article  Google Scholar 

  21. de Haan, G. and van Leest, A., Physiol. Meas., 2014, vol. 35, p. 2878. https://doi.org/10.1088/0967-3334/35/9/1913

    Article  Google Scholar 

  22. Sun, Y., Hu, S., Azorin-Peres, V., Greenwald, S.E., Chambers, J., and Zhu, Y., J. Biomed. Opt., 2011, vol. 16, p. 77010. https://doi.org/10.1117/1.3602852

    Article  Google Scholar 

  23. Kamshilin, A.A., Zaytsev, V.V., Lodygin, A.A., and Kashchenko, V.A., Sci. Rep., 2022, vol. 12, p. 1143. https://doi.org/10.1038/s41598-022-05080-7

    Article  ADS  Google Scholar 

  24. Lai, M., van der Stel, S.D., Groen, H.C., van Gastel, M., Kuhlmann, K.F.D., Ruers, T.J.M., and Hendriks, B.H.W., J. Imaging, 2022, vol. 8, 94. https://doi.org/10.3390/jimaging8040094

    Article  Google Scholar 

  25. van Manen, L., Handgraaf, H.J.M., Diana, M., Dijkstra, J., Ishizawa, T., Vahrmeijer, A.L., and Mieog, J.S.D., J. Surg. Oncol., 2018, vol. 118, p. 283. https://doi.org/10.1002/jso.25105

    Article  Google Scholar 

  26. Son, G.M., Kwon, M.S., Kim, Y., Kim, J., Kim, S.H., and Lee, J.W., Surg. Endosc., 2019, vol. 33, p. 1640. https://doi.org/10.1007/s00464-018-6439-y

    Article  Google Scholar 

  27. Anderson, R.R. and Parrish, J.A., J. Invest. Dermatol., 1981, vol. 77, p. 13. https://doi.org/10.1111/1523-1747.ep12479191

    Article  Google Scholar 

  28. Rasche, S., Huhle, R., Junghans, E., de Abreu, M.G., Ling, Y., Trumpp, A., and Zaunseder, S., Sci. Rep., 2020, vol. 10, p. 16464. https://doi.org/10.1038/s41598-020-73531-0

    Article  Google Scholar 

  29. Volynsky, M.A., Mamontov, O.V., Osipchuk, A.V., Zaytsev, V.V., Sokolov, A.Y., and Kamshilin, A.A., Biomed. Opt. Express, 2022, vol. 13, p. 184. https://doi.org/10.1364/BOE.443477

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the Russian Science Foundation (Grant no. 21-15-00265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kamshilin.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamshilin, A.A. Imaging Photoplethysmography as a Reliable Tool for Monitoring Tissue Perfusion during Open Brain and Abdominal Surgeries. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S85–S91 (2022). https://doi.org/10.3103/S1062873822700447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700447

Keywords:

Navigation