Skip to main content
Log in

Effect of Electron Entrainment by a Breather in a Graphene-Based Superlattice

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The breather electric effect in a graphene superlattice is studied in a collisionless approximation. An approximate solution in the form of a low-amplitude traveling breather of the nonlinear Klein–Gordon equation describing the propagation of nonlinear waves in a graphene superlattice is used in calculating the density of the drag current. The period of breather travel due to collisional dissipation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kryuchkov, S.V. and Kukhar’, E.I., Phys. B (Amsterdam, Neth.), 2013, vol. 408, p. 188.

    Google Scholar 

  2. Ratnikov, P.V., JETP Lett., 2009, vol. 90, p. 469.

    Article  ADS  Google Scholar 

  3. Kryuchkov, S.V. and Kukhar, E.I., Phys. E (Amsterdam, Neth.), 2012, vol. 46, p. 25.

    Google Scholar 

  4. Kryuchkov, S.V., Kukhar, E.I., and Zav’yalov, D.V., Laser Phys., 2013, vol. 23, p. 065902.

    Article  ADS  Google Scholar 

  5. Martin-Vergara, F., Rus, F., and Villatoro, F.R., in Nonlinear Systems, vol. 2: Understanding Complex Systems, Cham: Springer, 2018, p. 85.

  6. Martin-Vergara, F., Rus, F., and Villatoro, F.R., Chaos Solit. Fractals, 2021, vol. 151, p. 111281.

    Article  Google Scholar 

  7. Zav’yalov, D.V., Konchenkov, V.I., and Kryuchkov, S.V., arXiv:2204.11366, 2022.

  8. Kryuchkov, S.V. and Kaplya, E.V., Tech. Phys., 2003, vol. 48, p. 576.

    Article  Google Scholar 

  9. Martin-Vergara, F., Rus, F., and Villatoro, F.R., Commun. Nonlin. Sci. Numer. Simul., 2020, vol. 85, p. 105243.

    Google Scholar 

  10. Goodman, R.H. and Haberman, R., Phys. D (Amsterdam, Neth.), 2004, vol. 195, p. 303.

    Article  MathSciNet  Google Scholar 

  11. Mensah, S.T., Allotey, F.K.A., and Mensah, N.G., Phys. Scr., 2000, vol. 62, p. 212.

    Article  ADS  Google Scholar 

  12. Cuevas-Maraver, J., Kevrekidis, P.G., and Williams, F., The Sine-Gordon Model and Its Applications, Berlin: Springer, 2014, p. 263.

    Book  MATH  Google Scholar 

  13. Kryuchkov, S.V. and Kukhar’, E.I., Opt. Spectrosc., 2015, vol. 118, no. 1, p. 157.

    Article  ADS  Google Scholar 

  14. Kryuchkov, S.V. and Syrodoev, G.A., Fiz. Tekh. Poluprovodn., 1990, vol. 24, no. 6, p. 1120.

    Google Scholar 

  15. Epshtein, E.M., Fiz. Tekh. Poluprovodn., 1980, vol. 14, no. 12, p. 2422.

    Google Scholar 

  16. Epshtein, E.M., Radiophys. Quantum Electron., 1982, vol. 25, no. 1, p. 25.

    Article  Google Scholar 

  17. Kryuchkov, S.V. and Kukhar’, E.I., Phys. E (Amsterdam, Neth.), 2013, vol. 48, p. 96.

    Google Scholar 

  18. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Science, 2004, vol. 306, p. 666.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Konchenkov.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badikova, P.V., Zav’yalov, D.V., Konchenkov, V.I. et al. Effect of Electron Entrainment by a Breather in a Graphene-Based Superlattice. Bull. Russ. Acad. Sci. Phys. 87, 30–35 (2023). https://doi.org/10.3103/S1062873822700071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700071

Navigation