Skip to main content
Log in

Evolution of Crystallographic Texture, Microstructure, and Mechanical Properties during Flat Rolling of Alloys of the Cu–Zn System with Different Grain Sizes

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Investigation of the evolution of the parameters of crystallographic texture, microstructure, and mechanical properties of single-phase copper-based alloys with 10 and 30 wt % concentrations of Zn subjected to flat rolling in the coarse-grained state and preformed ultrafine-grained state are performed. A decrease in the stacking fault energy and an increase in the degree of reduction during flat rolling increases the values of the orientation distribution functions corresponding to twin orientations, decreases the grain size and coherent scattering regions, and increases the dislocation density and the twinning probability. These changes have a positive effect on the strength properties of the studied alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Carter, C.B. and Ray, I.L.F., Philos. Mag., 1977, vol. 35, no. 1, p. 189.

    Article  Google Scholar 

  2. Hirsch, P., Philos. Mag., 1962, vol. 7, p. 1349.

    Article  Google Scholar 

  3. Qu, S., An, X.H., Yang, H.J., et al., Acta Mater., 2009, vol. 57, no. 5, p. 1586.

    Article  Google Scholar 

  4. Zhang, P., An, X.H., Zhang, Z.J., et al., Scr. Mater., 2012, vol. 67, p. 871.

    Article  Google Scholar 

  5. Gallagher, P.C.J., Metall. Trans., 1970, vol. 1, no. 9, p. 2429.

  6. Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci., 2000, vol. 45, p. 103.

    Article  Google Scholar 

  7. Wang, Z., Wang, Y., Liao, X., et al., Scr. Mater., 2009, vol. 60, no. 1, p. 52.

    Article  Google Scholar 

  8. Zhao, Y., Horita, Z., Langdon, T., et al., Mater. Sci. Eng., A, 2008, vol. 474, no. 1.

  9. Zhang, Z., Duan, Q., An, X. et al., Mater. Sci. Eng., A, 2011, vol. 528, no. 12, p. 4259.

    Article  Google Scholar 

  10. An, X., Lin, Q., Wu, S., et al., Scr. Mater., 2011, vol. 64, no. 3, p. 249.

    Article  Google Scholar 

  11. Ungar, T., Balogh, L., Zhu, Y., et al., Mater. Sci. Eng., A, 2007, vol. 444, no. 1.

  12. Bahmanpour, H., Youssef, K., Horky, J., et al., Acta Mater., 2012, vol. 60, no. 8, p. 3340.

    Article  Google Scholar 

  13. Roy, B., Kumar, N., Gopalakrishnan Nambissan, P., et al., AIP Adv., 2014, vol. 4, no. 6, 067101.

    Article  Google Scholar 

  14. Konkova, T., Mironova, S., Korznikov, A., et al., Mater. Charact., 2015, vol. 101, p. 173.

    Article  Google Scholar 

  15. Jamaati, R. and Toroghinejad, M., Mater. Sci. Eng., A, 2014, vol. 598, p. 263.

    Article  Google Scholar 

  16. Kallend, J.S. and Davies, G.J., Texture, 1972, vol. 1, p. 51.

    Article  Google Scholar 

  17. Gu, C.F., Toth, L.S., Zhang, Y., and Hoffman, M., Scr. Mater., 2014, vol. 92, p. 51.

    Article  Google Scholar 

  18. Lapeire, L., Sidor, J., Verleysen, P., et al., Acta Mater., 2015, vol. 95, p. 224.

    Article  Google Scholar 

  19. Suwas, S. and Ray, R., Crystallographic Texture of Materials, London: Springer, 2014.

  20. Yan, H., Zhao, X., Jia, N., et al., J. Mater. Sci. Technol., 2014, vol. 30, no. 4, p. 408.

    Article  Google Scholar 

  21. Valiev, R.Z. and Aleksandrov, I.V., Ob”emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructured Metallic Materials: Preparation, Structure, and Properties), Moscow: Akademkniga, 2007.

  22. Lutterotti, L., Matthies, S., and Wenk, H.R., Proc. 12th Int. Conf. Textured Materials, 1999, vol. 1, p. 1599.

  23. Warren, B.E., Prog. Metal. Phys., 1959, vol. 8, p. 147.

    Article  Google Scholar 

  24. Williamson, G.K. and Smallman, R.E., Philos. Mag., 1956, vol. 1, p. 34

  25. https://labosoft.com.

  26. An, X.H., Wu, S.D., Wang, Z.G., and Zhang, Z.F., Prog. Mater. Sci., 2019, vol. 101, p. 1.

  27. Christian, J.W. and Mahajan, S., Prog. Mater. Sci., 1995, vol. 39, p. 1.

  28. El-Danaf, E., Kalidindi, S.R., Doherty, R.D., et al., Acta Mater., 2000, vol. 48, p. 2665.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-33-90109; and by the RF Ministry of Science and Higher Education, project no. 0838-2020-0006 “Fundamental Study of New Principles for Creating Promising Electromechanical Energy Converters with Characteristics above the World Level, Increased Efficiency, and Minimum Specific Indicators, Using Highly Efficient Electrotechnical Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Zaynullina.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaynullina, L.I., Alexandrov, I.V. Evolution of Crystallographic Texture, Microstructure, and Mechanical Properties during Flat Rolling of Alloys of the Cu–Zn System with Different Grain Sizes. Bull. Russ. Acad. Sci. Phys. 86, 1301–1308 (2022). https://doi.org/10.3103/S1062873822110351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822110351

Navigation