Skip to main content
Log in

Advances in Modelling of Fast Neutrons Induced Fission of 232Th

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Nuclear data obtained in the neutron induced fission of 232Th nucleus are of great importance for advanced fast reactors based on Th fuel cycle. Fission cross sections, mass and charge distributions, prompt emission in fission including neutron multiplicities, yields and cross-sections of some isotopes of interest for applications, isomer ratios were obtained. This paper presents the theoretical predictions and the first results on 232Th(n,f) by applying Talys and the author’s computer code for modeling of nuclear reaction mechanisms and the fission process. Theoretical evaluations of fission observables and produced isotopes are compared with existing experimental data and with similar data for neutrons induced fission of 233U nucleus. The present researches on 232Th(n,f) reaction are realized in the frame of nuclear data program running at Joint Institute for Nuclear Research (Dubna) basic facilities, IREN, and MT-25 Microtron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., de Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., and Prohaska, T., Pure Appl. Chem., 2016, vol. 88, no. 3, p. 265.

    Article  Google Scholar 

  2. Hargraves, R. and Moir, R., Am. Sci., 2010, vol. 98, p. 304.

    Article  Google Scholar 

  3. Krepel, J., Fission and transmutation, in Encyclopedia of Nuclear Energy, Amsterdam: Elsevier, 2021, vol. 1.

    Google Scholar 

  4. Waltar, A.E., Fission, in Encyclopedia of Nuclear Energy, Amsterdam: Elsevier, 2021, vol. 4.

    Google Scholar 

  5. Waltar, A.E., Medical, industrial and agricultural applications of nuclear technology, in Encyclopedia of Nuclear Energy, Amsterdam: Elsevier, 2021, vol. 4.

    Google Scholar 

  6. Koning, A.J., Hilaire, S., and Duijvestijn, M.C., TALYS-1.0., Proceedings of the International Conference on Nuclear Data for Science and Technology 2007, Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., and Leray, S., Eds., Nice: EDP Sciences, 2008, p. 211.

  7. Satchler, G.R., Direct Nuclear Reactions, New York: Oxford Univ. Press, 1983.

    Google Scholar 

  8. Koning, A.J. and Duijvestijn, M.C., Nucl. Phys. A, 2004, vol. 744, p. 15.

    Article  Google Scholar 

  9. Hauser, W. and Feshbach, H., Phys. Rev., 1952, vol. 87, no. 2, p. 366.

    Article  Google Scholar 

  10. Foderaro, A., The Neutron Interaction Theory, Cambridge: MIT Press, 1971.

    Google Scholar 

  11. Gledenov, Y.M., Sedysheva, M.V., Sedyshev, P.V., Oprea, A., Chen, Z., Chen, Y., Yuan, J., Zhang, G., Tang, G., Khuukhenkhuu, G., and Szalanski, P.J., Nucl. Sci. Technol., 2002, no. 2 (suppl.), p. 342.

  12. Oprea, A.I., Oprea, C., Pirvutoiu, C., and Vladoiu, D., Rom. Rep. Phys., 2011, vol. 63, no. 1, p. 107.

    Google Scholar 

  13. Hill, D.L. and Wheeler, J.A., Phys. Rev., 1953, vol. 89, p. 1102.

    Article  Google Scholar 

  14. Moldauer, P.A., Phys. Rev. B, 1964, vol. 135, p. 642.

    Article  MathSciNet  Google Scholar 

  15. Moldauer, P.A., Rev. Mod. Phys., 1964, vol. 36, p. 1079.

    Article  Google Scholar 

  16. Brosa, U., Grossmann, S., and Müller, A., Phys. Rep., 1990, vol. 197, no. 4, p. 167.

    Article  Google Scholar 

  17. Duijvestijn, M.C., Koning, A.J., and Hambsch, F.J., Phys. Rev. C, 2001, vol. 64, 014607.

    Article  Google Scholar 

  18. Huizenga, J.R. and Vandenbosh, R., Phys. Rev., 1960, vol. 120, p. 1305.

    Article  Google Scholar 

  19. Huizenga, J.R. and Vandenbosh, R., Phys. Rev., 1960, vol. 120, p. 1313.

    Article  Google Scholar 

  20. Smith, A.B., Phys. Rev., 1962, vol. 127, p. 718.

    Article  Google Scholar 

  21. Batchelor, R., Gilboy, W.B., and Towle, J.H., Nucl. Phys., 1965, vol. 65 p. 236.

    Article  Google Scholar 

  22. Fursov, B.I., Baranov, Yu.M., Klemyshev, M.P., Samylin, B.F., Smirenkin, G.N., and Turchin, Yu.M., Sov. At. Energy, 1991, vol. 71, p. 827.

    Article  Google Scholar 

  23. Karamian, S.A., Collins, C.B., Carroll, J.J., Adam, J., Belov, A.G., and Stegailov, V.I., Phys. Rev. C, 1999, vol. 59, p. 755.

    Article  Google Scholar 

  24. Simutkin, V.D., Pomp, S., Blomgren, J., Osterlund, M., Bevilaqua, R., Andersson, P., Ryzhov, I.V., Tutin, G.A., Yavshits, S.G., Vaishene, L.A., Onegin, M.S., Meulders, J.P., and Prieels, R., arXiv:1304.2316v1 [nucl-ex], 2013. Accessed September 15, 2021.

Download references

Funding

The present work was realized with the financial and logistical support of the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (Dubna) and the Annual Cooperation Program between the Joint Institute for Nuclear Research (Dubna) and Romanian Research Institutes for 2020 and 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oprea.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, C., Mihul, A. & Oprea, A.I. Advances in Modelling of Fast Neutrons Induced Fission of 232Th. Bull. Russ. Acad. Sci. Phys. 86, 1418–1425 (2022). https://doi.org/10.3103/S106287382211020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287382211020X

Navigation