Skip to main content
Log in

Alpha Particles Emission in Fast Neutrons Processes on 143Nd Nucleus

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Nuclear reactions induced by fast neutrons starting from 0.5 up to 25 MeV with emission of alpha particles were investigated. Cross-sections, angular correlations and, forward–backward asymmetry effects were evaluated with reaction code TALYS and the author’s own computer codes. Contribution to the cross-section of nuclear reaction mechanisms like direct, compound, and pre-equilibrium together with discrete and continuum states of residual nuclei were determined. Theoretical evaluations are compared with existing experimental data and parameters of nuclear potential in incident and emergent channels were obtained. Using cross section and angular correlation data from reaction code TALYS, the forward–backward effect is obtained for different incident neutron energies and target with given thickness and radius. The simulated forward–backward asymmetry coefficient is sensibly lower than the effect measured in the experiment. The difference can be explained by the presence of other emergent channels including alpha particles and not by the presence of so-called non-statistical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Frank, I.M., Sov. Phys. Usp., 1982, vol. 25, p. 279.

    Article  Google Scholar 

  2. Pikelner, L.B., Popov, Yu.P., and Sharapov, E.I., Intensive Nuclear Spectroscopy with Neutrons in Fifteen Anniversary of the Discovery of the Neutron, Moscow: Nauka, 1983.

    Google Scholar 

  3. Salvatores, M., Slessarev, I., and Tchistiakov, A., Nucl. Sci. Eng., 1998, vol. 130, no. 3, p. 309.

    Article  Google Scholar 

  4. Kooyman, T., Buiron, L., and Rimpault, G., Ann. Nucl. Energy, 2018, vol. 112, p. 748.

    Article  Google Scholar 

  5. Gledenov, Y.M., Sedysheva, M.V., Sedyshev, P.V., Oprea, A., Chen, Z., Chen, Y., Yuan, J., Zhang, G., Tang, G., Khuukhenkhuu, G., and Szalanski, P.J., Nucl. Sci. Technol., 2002, no. 2 (suppl.), p. 342.

  6. Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., de Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., and Prohaska, T., Pure Appl. Chem., 2016, vol. 88, no. 3, p. 265.

    Article  Google Scholar 

  7. Audi, G., Bersillon, O., Blachot, J., and Wapstra, A.H., Nucl. Phys. A, 2003, vol. 729, p. 3.

    Article  Google Scholar 

  8. Nuclear reactions video Internet page. http://nrv.jinr.ru/nrv. Accessed September 12, 2021.

  9. McCulloch, M.T. and Wasserburg, G.J., Science, 1978, vol. 200, no. 4345, p. 1003.

    Article  Google Scholar 

  10. Gledenov, Yu.M., Sedysheva, M.V., Stolupin, V.A., Zhang, G., Zhang, J., Wu, H., Liu, J., Chen, J., Khuukhenkhuu, G., Koehler, P.E., and Szalanski, P.J., Phys. Rev. C, 2009, vol. 80, 044602.

    Article  Google Scholar 

  11. Hauser, W. and Feshbach, H., Phys. Rev., 1952, vol. 87, no. 2, p. 366.

    Article  Google Scholar 

  12. Foderaro, A., The Neutron Interaction Theory, Cambridge: MIT Press, 1971.

    Google Scholar 

  13. Moldauer, P.A., Phys. Rev. B, 1964, vol. 135, p. 642.

    Article  MathSciNet  Google Scholar 

  14. Moldauer, P.A., Rev. Mod. Phys., 1964, vol. 36, p. 1079.

    Article  Google Scholar 

  15. Satchler, G.R., Direct Nuclear Reactions, New York: Oxford Univ. Press, 1983.

    Google Scholar 

  16. Koning, A.J. and Duijvestijn, M.C., Nucl. Phys. A, 2004, vol. 744, p. 15.

    Article  Google Scholar 

  17. Oprea, A.I., Oprea, C., Pirvutoiu, C., and Vladoiu, D., Rom. Rep. Phys., 2011, vol. 63, no. 1, p. 107.

    Google Scholar 

  18. Oprea, C., Mihul, A., and Oprea, A.I., CERN-Proceedings-2019-001, 2019, p. 125.

  19. Koning, A.J., Hilaire, S., and Duijvestijn, M.C., TALYS-1.0., Proceedings of the International Conference on Nuclear Data for Science and Technology 2007, Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., and Leray, S., Eds., Nice: EDP Sciences, 2008, p. 211.

  20. Ziegler, J.F., SRIM & TRIM Software. http://www.srim.org. Accessed September 15, 2021.

Download references

Funding

The present work was realized with the financial and logistical support of the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (Dubna) and the Annual Cooperation Program between the Joint Institute for Nuclear Research (Dubna) and Romanian Research Institutes for 2020 and 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oprea.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, C., Oprea, A.I. Alpha Particles Emission in Fast Neutrons Processes on 143Nd Nucleus. Bull. Russ. Acad. Sci. Phys. 86, 1410–1417 (2022). https://doi.org/10.3103/S1062873822110193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822110193

Navigation