Skip to main content
Log in

Profiling Mechanical Properties of Wood via Scratch Tests and Nanoindentation for Use in Dendrochronology

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Radial profiles of the mechanical properties of crosscut wood are obtained using scratch tests and nanoindentation. The profiles correspond to the annual growth of the ring structure. The width of the annual growth rings is determined with an accuracy no worse than that of standard optical means. The technology for evaluating the quality of wood and use in dendrochronological applications is relatively simple and non-laborious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wood Handbook—Wood as an Engineering Material, General Technical Report FPL-GTR-282, Madison: Dpt. Agric., For. Service, For. Prod. Lab., 2021.

  2. Chen, C., Kuang, Y., Zhu, S., et al., Nat. Rev. Mater., 2020, vol. 5, no. 9, p. 1.

    Article  ADS  Google Scholar 

  3. Hsueh, C.-H., Schmauder, S., Chen, C.-S., and Chawla, K.K., Handbook of Mechanics of Materials, Singapore: Springer, 2019.

    Google Scholar 

  4. Vázquez C., Gonçalves, R., Bertoldo, C., et al., Wood Sci. Technol., 2015, vol. 49, p. 607.

    Article  Google Scholar 

  5. Opazo-Vega, A., Rosales-Garcés, V., and Oyarzo-Vera, C., Materials, 2021, vol. 14, 269.

    Article  ADS  Google Scholar 

  6. Brancheriau, L., Ghodrati, A., Gallet, P., et al., J. Phys.: Conf. Ser., 2012, vol. 353, no. 1, p. 1.

    Google Scholar 

  7. Arciniegas, A., Prieto, F., Brancheriau, L., and Lasaygues, P., Trees, 2014, vol. 28, no. 6, p. 1559.

    Article  Google Scholar 

  8. Palma, S.S.A., Gonçalves, R., and Trinca, A.J., BioResources, 2018, vol. 13, no. 2, p. 2834.

    Article  Google Scholar 

  9. Krajnc, L., Kadunc, A., and Straže, A., Holzforschung, 2019, vol. 73, no. 9, p. 807.

    Article  Google Scholar 

  10. Moghaddam, M.S., den Bulcke, J.V., and Wålinder, M.E.P., Holzforschung, 2017, vol. 71, no. 2, p. 119.

    Article  Google Scholar 

  11. Alves, E.E.N., Rodriguez, D.R.O., Rocha, P.A., et al., Results Chem., 2021, vol. 3, 100121.

    Article  Google Scholar 

  12. Ruano, A., Zitek, A., Hinterstoisser, B., and Hermoso, E., Holzforschung, 2019, vol. 73, no. 7, p. 621.

    Article  Google Scholar 

  13. Xin, Z., Guan, C., Zhang, H., et al., Constr. Build. Mater., 2021, vol. 304, 124614.

    Article  Google Scholar 

  14. Kang, X., Kirui, A., Widanage, M.C.D., et al., Nat. Commun., 2019, vol. 10, 347.

    ADS  Google Scholar 

  15. Villasante, A., Íñiguez-González, G., and Puigdomenech, L., Holzforschung, 2019, vol. 73, no. 4, p. 331.

    Article  Google Scholar 

  16. Llana, D.F., Íñiguez-González, G., Díez, M.R., and Arriaga, F., Maderas: Cienc. Tecnol., 2020, vol. 22, no. 2, p. 133.

    Google Scholar 

  17. Handbook of Nanocellulose and Cellulose Nanocomposites, Kargarzadeh, H., Ahmad, I., Thomas, S., and Dufresne, A., Eds., Weinheim: Wiley, 2017.

    Google Scholar 

  18. Hsueh, C.-H., Schmauder, S., Chen, C.-S., and Chawla, K.K., Handbook of Mechanics of Materials, Singapore: Springer, 2019.

    Google Scholar 

  19. Golovin, Yu.I., Phys. Solid State, 2021, vol. 63, no. 1, p. 1.

    Article  ADS  Google Scholar 

  20. Cascione, M., De Matteis, V., Rinaldi, R., and Leporatti, S., Microsc. Res. Technol., 2017, vol. 80, p. 109.

    Article  Google Scholar 

  21. Golovin, Yu.I., Phys. Solid State, 2008, vol. 50, no. 12, p. 2205.

    Article  ADS  Google Scholar 

  22. Golovin, Yu.I., Zavod. Lab., Diagn. Mater., 2009, vol. 75, no. 1, p. 45.

    Google Scholar 

  23. Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindentation and Its Possibilities), Moscow: Mashinostroenie, 2009.

  24. Fischer-Cripps, A.C., Nanoindentation, New York: Springer, 2011.

    Book  Google Scholar 

  25. Oyen, M.L., Handbook of Nanoindentation with Biological Applications, Pan Stanford, 2011.

    Google Scholar 

  26. Gärtner H., Cherubini, P. Fonti, P., et al., J. Visualized Exp., 2015, vol. 97, e52337.

    Google Scholar 

  27. Zhang, X., Li, J., Liu, X., and Chen, Z., J. For. Res., 2019, vol. 31, no. 2, 1002.

    Google Scholar 

  28. Kaczka, R.J. and Wilson, R., Dendrochronologia, 2021, vol. 68, 125859.

    Article  Google Scholar 

  29. Golovin, Yu.I., Tyurin, A.I., Golovin, D.Yu., et al., Russ. Phys. J., 2021, vol. 63, no. 11, p. 2041.

    Article  Google Scholar 

  30. Golovin, Yu.I., Tyurin, A.I., Gusev, A.A., et al., Pis’ma Zh. Tekh. Fiz., 2022, vol. 48, no. 4, p. 36.

  31. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, no. 6, p. 1564.

    Article  ADS  Google Scholar 

  32. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 2004, vol. 19, no. 1, p. 3.

    Article  ADS  Google Scholar 

  33. Oliver, W.C. and Pharr, G.M., MRS Bull., 2010, vol. 35, no. 11, p. 897.

    Article  Google Scholar 

  34. ISO group TC 164/SC 3/WG1 and ASTM E28.06.11. ISO/DIS 14577-1, 2, 3.

  35. Qian, L. and Zhao, H., Micromachines, 2018, vol. 9, 654.

    Article  Google Scholar 

  36. Mania, P. and Nowicki, M., Bull. Polish Acad. Sci. Tech. Sci., 2020, vol. 68, no. 50, p. 1237.

    Google Scholar 

  37. Wu, Y., Wu, X., Yang, F., et al., Forests, 2020, vol. 11, 1247.

    Article  Google Scholar 

  38. Huang, Y.H., Fei, B.H., Yu, Y., et al., BioResources, 2012, vol. 7, no. 3, 3028.

    Google Scholar 

  39. Tze, W.T.Y., Wang, S., Rials, T.G., et al., Composites, Part A, 2007, vol. 38, p. 945.

    Article  Google Scholar 

  40. Toumpanaki, E., Shah, D.U., and Eichhorn, S.J., Adv. Mater., 2021, vol. 33, no. 28, 2001613.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant for young scientists from Derzhavin Tambov State University, contract no. DG2021-MU-5. The results were partially obtained using the equipment of the Center for Collective Use of Scientific Equipment of Derzhavin Tambov State University. This work was partially supported by the Ministry of Science and Higher Education of the Russian Federation in the frame work of agreement no. 075-15-2021-709 (unique project identifier RF-2296.61321X0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by L. Mosina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Samodurov, A.A., Tyurin, A.I. et al. Profiling Mechanical Properties of Wood via Scratch Tests and Nanoindentation for Use in Dendrochronology. Bull. Russ. Acad. Sci. Phys. 86, 1219–1223 (2022). https://doi.org/10.3103/S1062873822100082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822100082

Navigation